[1] 尚乐乐, 宋建文, 王嘉颖, 等. 番茄果实品质形成及其分子机理研究进展[J]. 中国蔬菜, 2019(4):21-28.
SHANG L L, SONG J W, WANG J Y, et al. Research progress on quality formation and molecular mechanism of tomato fruit[J]. China Vegetables, 2019(4):21-28.(in Chinese with English abstract)
[2] CONSORTIUM T T G. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400):635-641.
[3] LIN T, ZHU G T, ZHANG J H, et al. Genomic analyses provide insights into the history of tomato breeding[J]. Nature Genetics, 2014, 46(11):1220-1226.
[4] TIEMAN D, ZHU G T, RESENDE M F R, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science, 2017, 355(6323):391-394.
[5] ZHU G T, WANG S C, HUANG Z J, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2):249-261.e12.
[6] 谭其猛. 蔬菜育种[M]. 北京: 农业出版社, 1980.
[7] STOMMEL J R. Enzymic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum[J]. Plant Physiology, 1992, 99(1):324-328.
[8] 霍建勇, 刘静, 冯辉, 等. 番茄果实风味品质研究进展[J]. 中国蔬菜, 2005(2):34-36.
HUO J Y, LIU J, FENG H, et al. Reviews on flavor quality of tomato[J]. China Vegetables, 2005(2):34-36.(in Chinese with English abstract)
[9] POWELL A L T, NGUYEN C V, HILL T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development[J]. Science, 2012, 336(6089):1711-1715.
[10] 齐红岩, 李天来, 邹琳娜, 等. 番茄果实不同发育阶段糖分组成和含量变化的研究初报[J]. 沈阳农业大学学报, 2001, 32(5):346-348.
QI H Y, LI T L, ZOU L N, et al. Changes of composition and content of carbohydrate during tomato fruit development[J]. Journal of Shenyang Agricultural University, 2001, 32(5):346-348.(in Chinese with English abstract)
[11] 刘以前. 番茄叶片和果实中糖代谢及其遗传研究[D]. 北京: 中国农业大学, 2005.
LIU Y Q. The sugar metabolism in tomato (Lycopersicum esculentum Mill.) leaves and fruits and the heredity research[D]. Beijing: China Agricultural University, 2005.(in Chinese with English abstract)
[12] 冯超阳. 番茄果实糖代谢中关键SlSWEETs基因的鉴定及其功能验证[D]. 沈阳: 沈阳农业大学, 2018.
FENG C Y. Effect of SlSWEETs on sugar metabolism of tomato fruits and functional verification of four SlSWEETs genes[D]. Shenyang: Shenyang Agricultural University, 2018.(in Chinese with English abstract)
[13] 谷婧玥. 番茄果实可溶性糖含量的QTL定位及种质资源筛选[D]. 哈尔滨: 东北农业大学, 2014.
GU J Y. QTL mapping soluble sugar content of tomato fruit and germplasm resources screening[D]. Harbin: Northeast Agricultural University, 2014.(in Chinese with English abstract)
[14] 任婧. 番茄果实可溶性糖含量遗传规律的研究及QTL定位[D]. 哈尔滨: 东北农业大学, 2018.
REN J. Tomato soluble sugar content genetic regularity analysis and QTL mapping[D]. Harbin: Northeast Agricultural University, 2018.(in Chinese with English abstract)
[15] CHETELAT R T, KLANN E, DEVERNA J W, et al. Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii[J]. The Plant Journal, 1993, 4(4):643-650.
[16] CHETELAT R T, DEVERNA J W, BENNETT A B. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato[J]. Theoretical and Applied Genetics, 1995, 91(2):334-339.
[17] 杜永臣. 番茄育种研究主要进展[C]//全国蔬菜遗传育种学术讨论会论文集. 成都: 全国蔬菜遗传育种学术讨论会, 2002:145-154.
[18] LEVIN I, GILBOA N, YESELSON E, et al. Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits[J]. Theoretical and Applied Genetics, 2000, 100(2):256-262.
[19] FRIDMAN E, PLEBAN T, ZAMIR D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4718-4723.
[20] FRIDMAN E. Zooming in on a quantitative trait for tomato yield using interspecific introgressions[J]. Science, 2004, 305(5691):1786-1789.
[21] PETREIKOV M, SHEN S, YESELSON Y, et al. Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit[J]. Planta, 2006, 224(6):1465-1479.
[22] 崔娜, 王卫平, 林凤, 等. 植物果糖激酶的研究进展[J]. 中国农学通报, 2010, 26(14):41-47.
CUI N, WANG W P, LIN F, et al. Update on fructokinase in higher plants[J]. Chinese Agricultural Science Bulletin, 2010, 26(14):41-47.(in Chinese with English abstract)
[23] 王绍会. 利用Solanum galapagense重组自交系对番茄果实重量、形状和可溶性固形物含量的QTL定位分析[D]. 北京: 中国农业科学院, 2015.
WANG S H. QTLs mapping for tomato fruit weight, shape and soluble solid content in Solanum lycopersicon × Solanum galapagense recombinant inbred line[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.(in Chinese with English abstract)
[24] DA CRUZ CENTENO D, OSORIO S, NUNES-NESI A, et al. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening[J]. The Plant Cell, 2011, 23(1):162-184.
[25] LIU H F, GÉNARD M, GUICHARD S, et al. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes[J]. Journal of Experimental Botany, 2007, 58(13):3567-3580.
[26] 王蓉, 田园, 杨柳, 等. 番茄果实不同发育时期有机酸组分及含量分析[J]. 中国蔬菜, 2017(10):58-62.
WANG R, TIAN Y, YANG L, et al. Analysis of organic acid components in tomato fruit during different development stages[J]. China Vegetables, 2017(10):58-62.(in Chinese with English abstract)
[27] 曾骧. 果树生理学[M]. 北京: 北京农业大学出版社, 1992.
[28] 李庆余. 氮素形态调控番茄果实氮和有机酸代谢的分子生理机制[D]. 南京: 南京农业大学, 2010.
LI Q Y. Molecular and physiological regulation mechanism of the nitrogen and organic acid metabolism in tomato fruit by different nitrogen forms[D]. Nanjing: Nanjing Agricultural University, 2010.(in Chinese with English abstract)
[29] GUILLET C, JUST D, BENARD N, et al. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit[J]. Planta, 2002, 214(5):717-726.
[30] MARTINOIA E, MAESHIMA M, NEUHAUS H E. Vacuolar transporters and their essential role in plant metabolism[J]. Journal of Experimental Botany, 2007, 58(1):83-102.
[31] MORGAN M J, OSORIO S, GEHL B, et al. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line[J]. Plant Physiology, 2013, 161(1):397-407.
[32] SWEETMAN C, DELUC L G, CRAMER G R, et al. Regulation of malate metabolism in grape berry and other developing fruits[J]. Phytochemistry, 2009,70(11/12): 1329-1344.
[33] YE J, WANG X, HU T X, et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell, 2017, 29(9):2249-2268.
[34] WALKOF C, HYDE R B. Inheritance of acidity in tomatoes[J]. Canadian Journal of Plant Science, 1963, 43(4):528-533.
[35] LAWRENCE L R. The measurement and inheritance of acidity in the tomato[D]. Illinois: University of Illinois at Urbana-Champaign, 1963.
[36] 戚飞. 番茄有机酸含量的QTL分析及种质资源筛选[D]. 哈尔滨: 东北农业大学, 2015.
QI F. QTL mapping genes in tomato fruitacid and germplasm resources screening[D]. Harbin: Northeast Agricultural University, 2015.(in Chinese with English abstract)
[37] BUTTERY R G, SEIFERT R M, GUADAGNI D G, et al. Characterization of additional volatile components of tomato[J]. Journal of Agricultural and Food Chemistry, 1971, 19(3):524-529.
[38] KLEE H J, TIEMAN D M. Genetic challenges of flavor improvement in tomato[J]. Trends in Genetics, 2013, 29(4):257-262.
[39] BALDWIN E A, SCOTT J W, SHEWMAKER C K, et al. Flavor Trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components[J]. Hort Science, 2000, 35(6):1013-1022.
[40] KLEE H J, GIOVANNONI J J. Genetics and control of tomato fruit ripening and quality attributes[J]. Annual Review of Genetics, 2011, 45:41-59.
[41] YILMAZ E, TANDON K S, SCOTT J W, et al. Absence of a clear relationship between lipid pathway enzymes and volatile compounds in fresh tomatoes[J]. Journal of Plant Physiology, 2001, 158(9):1111-1116.
[42] GRAY D A, PRESTAGE S, LINFORTH R S T, et al. Fresh tomato specific fluctuations in the composition of lipoxygenase-generated C6 aldehydes[J]. Food Chemistry, 1999, 64(2):149-155.
[43] CHEN G P, HACKETT R, WALKER D, et al. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004, 136(1):2641-2651.
[44] 王利斌, 李雪晖, 石珍源, 等. 番茄果实的芳香物质组成及其影响因素研究进展[J]. 食品科学, 2017, 38(17):291-300.
WANG L B, LI X H, SHI Z Y, et al. Recent advances in research on volatile aroma compounds in tomatoes and their impacting factors[J]. Food Science, 2017, 38(17):291-300.(in Chinese with English abstract)
[45] TIEMAN D, TAYLOR M, SCHAUER N, et al. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21):8287-8292.
[46] TIEMAN D M, LOUCAS H M, KIM J Y, et al. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol[J]. Phytochemistry, 2007, 68(21):2660-2669.
[47] TIEMAN D, ZEIGLER M, SCHMELZ E, et al. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate[J]. The Plant Journal, 2010, 62(1):113-123.
[48] MAGEROY M H, TIEMAN D M, FLOYSTAD A, et al. A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol[J]. The Plant Journal, 2012, 69(6):1043-1051.
[49] LEWINSOHN E, SITRIT Y, BAR E, et al. Not just colors: carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit[J]. Trends in Food Science & Technology, 2005, 16(9):407-415.
[50] SIMKIN A J, SCHWARTZ S H, AULDRIDGE M, et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone[J]. The Plant Journal, 2004, 40(6):882-892.
[51] 王欢欢, 马越, 白冰, 等. 番茄果实呈香组分及其代谢途径研究进展[J]. 中国瓜菜, 2018, 31(12):1-4.
WANG H H, MA Y, BAI B, et al. Progress of aroma volatiles of tomato fruit and their metabolic pathway[J]. China Cucurbits and Vegetables, 2018, 31(12):1-4.(in Chinese with English abstract)
[52] 齐乃敏, 杨少军, 朱龙英, 等. 番茄主要品质性状的遗传研究进展[J]. 上海农业学报, 2006, 22(4):140-143.
QI N M, YANG S J, ZHU L Y, et al. Advance in genetic research into main quality characters of tomato[J]. Acta Agriculturae Shanghai, 2006, 22(4):140-143.(in Chinese with English abstract) |