浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1975-1992.DOI: 10.3969/j.issn.1004-1524.20236225
谢晓杰(), 许双燕, 王文凡, 杨健, 赵卓群, 王敏, 郑华宝*(
)
收稿日期:
2023-02-23
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
谢晓杰(1997—),女,安徽阜阳人,硕士研究生,研究方向为环境中抗生素的微生物降解。E-mail:18726558232@163.com
通讯作者:
*郑华宝,E-mail:zhenghuabao@zafu.edu.cn
基金资助:
XIE Xiaojie(), XU Shuangyan, WANG Wenfan, YANG Jian, ZHAO Zhuoqun, WANG Min, ZHENG Huabao*(
)
Received:
2023-02-23
Online:
2023-08-25
Published:
2023-08-29
摘要:
抗生素在畜禽养殖中被广泛用于治疗动物感染,但动物体并不能完全代谢吸收抗生素,大部分抗生素随着尿液、粪便排出体外释放到环境中,导致抗生素残留和抗性基因污染。本文综述了畜禽养殖中抗生素的使用现状、抗生素残留的危害,总结了降解抗生素的纯培养微生物及其降解机理,讨论了抗生素降解菌在堆肥中的应用,展望了微生物降解抗生素的发展前景,以期为畜禽养殖废弃物中抗生素污染的治理提供参考。
中图分类号:
谢晓杰, 许双燕, 王文凡, 杨健, 赵卓群, 王敏, 郑华宝. 畜禽养殖废弃物中抗生素的微生物降解研究进展[J]. 浙江农业学报, 2023, 35(8): 1975-1992.
XIE Xiaojie, XU Shuangyan, WANG Wenfan, YANG Jian, ZHAO Zhuoqun, WANG Min, ZHENG Huabao. Research progress on microbial degradation of antibiotics in livestock and poultry breeding wastes[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1975-1992.
抗生素类别 Antibiotics category | 药剂 Reagent | 微生物 Microbes | 降解条件 Degradation condition | 降解时间 Degreadation time/h | 降解率 Degradation rate/% | 参考文献 References |
---|---|---|---|---|---|---|
大环内酯类 Macrolides | 泰乐菌素 Tylosin | 斯氏普罗威登斯菌 Providencia stuartii | 丰富培养基,40 ℃,pH 7.0,100 mg·L-1泰乐菌素 Rich medium, 40 ℃, pH 7.0, 100 mg·L-1 tylosin | 15 | 100.0 | [ |
产酸克雷伯氏菌 Klebsiella oxytoca | 丰富培养基,35 ℃,pH 7.0,25 mg·L-1泰乐菌素 Rich medium, 35 ℃, pH 7.0, 25 mg·L-1 tylosin | 36 | 99.3 | [ | ||
越南伯克霍尔德氏菌 Burkholderia vietnamiensis | 丰富培养基,30 ℃,pH 7.0,300 mg·L-1泰乐菌素 Rich medium, 30 ℃, pH 7.0, 300 mg·L-1 tylosin | 72 | 99.0 | [ | ||
红霉素 Erythromycin | 甲基菌属 Methylobacillus sp. | 无机盐培养基,35 ℃,pH 7.0,100 mg·L-1红霉素 Inorganic salt medium, 35 ℃, pH 7.0, 100 mg·L-1 erythromycin | 48 | 88.7 | [ | |
恶臭假单胞菌 Pseudomonas putida | 无机盐培养基,30 ℃,pH 7.0~7.5,30 mg·L-1红霉素 Inorganic salt medium, 30 ℃, pH 7.0-7.5, 30 mg·L-1 erythromycin | 120 | 76.6 | [ | ||
四环素类 Tetracyclines | 四环素 Tetracycline | 新型黏质沙雷氏菌 Serratia marcescens | 无机盐培养基,36 ℃,pH 6.0,20 mg·L-1四环素 Inorganic salt medium, 36 ℃, pH 6.0, 20 mg·L-1 tetracycline | 48 | 89.5 | [ |
小陌生菌 Advenella sp. | 丰富培养基,30 ℃,pH 7.0,50 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 50 mg·L-1 tetracycline | 144 | 57.8 | [ | ||
无色杆菌属 Achromobacter sp. | 无机盐培养基,30 ℃,pH 7.0,50 mg·L-1四环素 Inorganic salt medium, 30 ℃, pH 7.0, 50 mg·L-1 tetracycline | 120 | 63.9 | [ | ||
拉乌尔菌属 Raoultella sp. | 无机盐培养基,25 ℃,pH 7.0,50 mg·L-1四环素 Inorganic salt medium, 25 ℃, pH 7.0, 50 mg·L-1 tetracycline | 192 | 70.7 | [ | ||
蜡样芽孢杆菌 Bacillus cereus | 丰富培养基,30 ℃,pH 7.0,100 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 100 mg·L-1 tetracycline | 168 | 56.2 | [ | ||
阴沟肠杆菌 Enterobacter cloacae | 丰富培养基,30 ℃,pH 7.0,80 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 80 mg·L-1 tetracycline | 168 | 75.8 | [ | ||
肺炎克雷伯菌 Klebsiella pneumoniae | 丰富培养基,34.4 ℃,pH 7.2,60 mg·L-1四环素 Rich medium, 34.4 ℃, pH 7.2, 60 mg·L-1 tetracycline | 168 | 94.3 | [ | ||
土霉素 Oxytetracycline | 烟草节杆菌 Arthrobacter nicotianae | 丰富培养基,30 ℃,pH 9.0,150 mg·L-1土霉素 Rich medium, 30 ℃, pH 9.0, 150 mg·L-1 oxytetracycline | 192 | 72.2 | [ | |
潘多拉菌属 Pandoraea sp. | 无机盐培养基,30 ℃,pH 6.0,60 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 6.0, 60 mg·L-1 oxytetracycline | 120 | 89.4 | [ | ||
假单胞菌属 Pseudomonas sp. | 无机盐培养基,30 ℃,pH 7.0,100 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 7.0, 100 mg·L-1 oxytetracycline | 168 | 26.7 | [ | ||
微紫青霉 Penicillium janthinellum | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 oxytetracycline | 168 | 40.3 | [ | ||
磺胺类 Sulfonamides | 磺胺对甲 氧嘧啶 Sulfametoxy- diazine | 水生产碱杆菌 Alcaligenes aquatillis | 无机盐培养基,30 ℃,pH 7.0,100 mg·L-1磺胺对甲氧嘧啶 Inorganic salt medium, 30 ℃, pH 7.0, 100 mg·L-1 sulfametoxydiazine | 96 | 50.0 | [ |
磺胺二甲嘧啶 Sulfamethazine | 腐皮镰刀菌 Fusarium solani | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1磺胺二甲嘧啶 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 sulfamethazine | 168 | 18.5 | [ | |
蜡样芽孢杆菌 Bacillus cereus | 无机盐培养基,30 ℃,pH 8.0,50 mg·L-1磺胺二甲嘧啶 Inorganic salt medium, 30 ℃, pH 8.0, 50 mg·L-1 sulfamethazine | 36 | 100.0 | [ | ||
磺胺多辛 Sulfadoxine | 假单胞菌属 Pseudomonas sp. | 无机盐培养基,30 ℃,pH 6.0,30 mg·L-1磺胺多辛 Inorganic salt medium, 30 ℃, pH 6.0, 30 mg·L-1 sulfadoxine | 48 | 30.0 | [ | |
磺胺吡啶 Sulfapyridine | 大肠埃希菌属 Escherichia sp. | 无机盐培养基,30 ℃,10 mg·L-1磺胺吡啶 Inorganic salt medium, 30 ℃, 10 mg·L-1 sulfapyridine | 48 | 66.0 | [ | |
磺胺噻唑 Sulfathiazole | 不动杆菌属 Acinetobacter sp. | 无机盐培养基,30 ℃,10 mg·L-1磺胺噻唑 Inorganic salt medium, 30 ℃, 10 mg·L-1 sulfathiazole | 48 | 45.0 | [ | |
磺胺甲恶唑 Sulfamethoxazole | 复合菌株(成晶节杆菌、红平红球菌Mixed strains (Arthrobacter crystallopoietes, Rhodococcus erythropolis) | 无机盐培养基,31.5 ℃,10 mg·L-1磺胺甲恶唑 Inorganic salt medium, 31.5 ℃, 10 mg·L-1 sulfamethoxazole | 72 | >12.0 | [ | |
喹诺酮类 Quinolones | 诺氟沙星 Norfloxacin | 微紫青霉 Penicillium janthinellum | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1诺氟沙星 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 norfloxacin | 168 | 10.6 | [ |
山羊葡萄球菌 Staphylococcus caprae | 无机盐培养基,30 ℃,pH 7.0,5 mg·L-1诺氟沙星 Inorganic salt medium, 30 ℃, pH 7.0, 5 mg·L-1 norfloxacin | 240 | 92.6 | [ | ||
嗜热菌属 Thermus sp. | 无机盐培养基,70 ℃,10 mg·L-1诺氟沙星 Inorganic salt medium, 70 ℃, 10 mg·L-1 norfloxacin | 72 | 66.0 | [ | ||
恩诺沙星 Enrofloxacin | 嗜热菌属 Thermus sp. | 无机盐培养基,70 ℃,10 mg·L-1恩诺沙星 Inorganic salt medium, 70 ℃, 10 mg·L-1 enrofloxacin | 168 | 80.0 | [ | |
普罗威登斯菌属 Providencia sp. | 无机盐培养基,8 ℃,500 μg·L-1恩诺沙星 Inorganic salt medium, 8 ℃, 500 μg·L-1 enrofloxacin | 336 | 33.7 | [ | ||
粪肠球菌 Enterococcus faecalis | 丰富培养基,33.6 ℃,pH 5.8,100 mg·L-1恩诺沙星 Rich medium, 33.6 ℃, pH 5.8, 100 mg·L-1 enrofloxacin | 96 | 77.8 | [ | ||
氨基糖苷类 Aminoglycosides | 庆大霉素 Gentamicin | 缺陷短波单胞菌 Brevundimonas diminuta | 丰富培养基,30 °C,pH 8.0, 100 mg·L-1庆大霉素 Rich medium, 30 ℃, pH 8.0, 100 mg·L-1 gentamicin | 168 | 41.4 | [ |
土曲霉 Aspergillus terreus | 丰富培养基,30 °C,pH 6.0,100 mg·L-1庆大霉素 Rich medium, 30 ℃, pH 6.0, 100 mg·L-1 gentamicin | 168 | 95.0 | [ | ||
复合菌株(寡养单胞菌属、鞘氨醇单胞菌属、土壤杆菌属) Mixed strains (Stenotrophomonas sp., Sphingomonas sp., Agrobacterium sp.) | 无机盐培养基,37 ℃,pH 7.2, 1 000 mg·L-1庆大霉素 Rich medium, 37 ℃, pH 7.2, 1 000 mg·L-1 gentamicin | 168 | 71.5 | [ | ||
氯霉素类 Chloram- phenicol | 氯霉素 Chloram- phenicol | 红球菌 Rhodococcus sp. | 无机盐培养基,30 ℃,50 mg·L-1氯霉素 Inorganic salt medium, 30 ℃, 50 mg·L-1 chloramphenicol | 42 | 99.6 | [ |
假单胞菌属 Pseudomonas sp. | 无机盐培养基,20 ℃,pH 7.0,300 mg·L-1氯霉素 Inorganic salt medium, 20 ℃, pH 7.0, 300 mg·L-1 chloramphenicol | 48 | 72.6 | [ | ||
β-内酰胺类 β-lactams | 头孢克肟 Cefixime | 无色杆菌属 Achromobacter sp. | 丰富培养基,37 ℃,pH 6.0~7.0,100 mg·L-1头孢克肟 Rich medium, 37 ℃, pH 6.0-7.0, 100 mg·L-1 cefixime | 168 | 92.7 | [ |
青霉素 Penicillin | 螯合球菌属 Chelatococcus sp. | 丰富培养基,37 ℃,pH 6.0~8.0, 400 mg·L-1青霉素 Rich medium, 37 ℃, pH 6.0-8.0, 400 mg·L-1 penicillin | 6 | 98.0 | [ | |
黏质红酵母属 Rhodotorula mucilaginosa | 丰富培养基,30 ℃,20 g·L-1青霉素 Rich medium, 30 ℃, 20 g·L-1 penicillin | 24 | 85.0 | [ |
表1 降解抗生素的微生物及其降解条件
Table 1 Antibiotics-degrading microbes and degradation conditions
抗生素类别 Antibiotics category | 药剂 Reagent | 微生物 Microbes | 降解条件 Degradation condition | 降解时间 Degreadation time/h | 降解率 Degradation rate/% | 参考文献 References |
---|---|---|---|---|---|---|
大环内酯类 Macrolides | 泰乐菌素 Tylosin | 斯氏普罗威登斯菌 Providencia stuartii | 丰富培养基,40 ℃,pH 7.0,100 mg·L-1泰乐菌素 Rich medium, 40 ℃, pH 7.0, 100 mg·L-1 tylosin | 15 | 100.0 | [ |
产酸克雷伯氏菌 Klebsiella oxytoca | 丰富培养基,35 ℃,pH 7.0,25 mg·L-1泰乐菌素 Rich medium, 35 ℃, pH 7.0, 25 mg·L-1 tylosin | 36 | 99.3 | [ | ||
越南伯克霍尔德氏菌 Burkholderia vietnamiensis | 丰富培养基,30 ℃,pH 7.0,300 mg·L-1泰乐菌素 Rich medium, 30 ℃, pH 7.0, 300 mg·L-1 tylosin | 72 | 99.0 | [ | ||
红霉素 Erythromycin | 甲基菌属 Methylobacillus sp. | 无机盐培养基,35 ℃,pH 7.0,100 mg·L-1红霉素 Inorganic salt medium, 35 ℃, pH 7.0, 100 mg·L-1 erythromycin | 48 | 88.7 | [ | |
恶臭假单胞菌 Pseudomonas putida | 无机盐培养基,30 ℃,pH 7.0~7.5,30 mg·L-1红霉素 Inorganic salt medium, 30 ℃, pH 7.0-7.5, 30 mg·L-1 erythromycin | 120 | 76.6 | [ | ||
四环素类 Tetracyclines | 四环素 Tetracycline | 新型黏质沙雷氏菌 Serratia marcescens | 无机盐培养基,36 ℃,pH 6.0,20 mg·L-1四环素 Inorganic salt medium, 36 ℃, pH 6.0, 20 mg·L-1 tetracycline | 48 | 89.5 | [ |
小陌生菌 Advenella sp. | 丰富培养基,30 ℃,pH 7.0,50 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 50 mg·L-1 tetracycline | 144 | 57.8 | [ | ||
无色杆菌属 Achromobacter sp. | 无机盐培养基,30 ℃,pH 7.0,50 mg·L-1四环素 Inorganic salt medium, 30 ℃, pH 7.0, 50 mg·L-1 tetracycline | 120 | 63.9 | [ | ||
拉乌尔菌属 Raoultella sp. | 无机盐培养基,25 ℃,pH 7.0,50 mg·L-1四环素 Inorganic salt medium, 25 ℃, pH 7.0, 50 mg·L-1 tetracycline | 192 | 70.7 | [ | ||
蜡样芽孢杆菌 Bacillus cereus | 丰富培养基,30 ℃,pH 7.0,100 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 100 mg·L-1 tetracycline | 168 | 56.2 | [ | ||
阴沟肠杆菌 Enterobacter cloacae | 丰富培养基,30 ℃,pH 7.0,80 mg·L-1四环素 Rich medium, 30 ℃, pH 7.0, 80 mg·L-1 tetracycline | 168 | 75.8 | [ | ||
肺炎克雷伯菌 Klebsiella pneumoniae | 丰富培养基,34.4 ℃,pH 7.2,60 mg·L-1四环素 Rich medium, 34.4 ℃, pH 7.2, 60 mg·L-1 tetracycline | 168 | 94.3 | [ | ||
土霉素 Oxytetracycline | 烟草节杆菌 Arthrobacter nicotianae | 丰富培养基,30 ℃,pH 9.0,150 mg·L-1土霉素 Rich medium, 30 ℃, pH 9.0, 150 mg·L-1 oxytetracycline | 192 | 72.2 | [ | |
潘多拉菌属 Pandoraea sp. | 无机盐培养基,30 ℃,pH 6.0,60 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 6.0, 60 mg·L-1 oxytetracycline | 120 | 89.4 | [ | ||
假单胞菌属 Pseudomonas sp. | 无机盐培养基,30 ℃,pH 7.0,100 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 7.0, 100 mg·L-1 oxytetracycline | 168 | 26.7 | [ | ||
微紫青霉 Penicillium janthinellum | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1土霉素 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 oxytetracycline | 168 | 40.3 | [ | ||
磺胺类 Sulfonamides | 磺胺对甲 氧嘧啶 Sulfametoxy- diazine | 水生产碱杆菌 Alcaligenes aquatillis | 无机盐培养基,30 ℃,pH 7.0,100 mg·L-1磺胺对甲氧嘧啶 Inorganic salt medium, 30 ℃, pH 7.0, 100 mg·L-1 sulfametoxydiazine | 96 | 50.0 | [ |
磺胺二甲嘧啶 Sulfamethazine | 腐皮镰刀菌 Fusarium solani | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1磺胺二甲嘧啶 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 sulfamethazine | 168 | 18.5 | [ | |
蜡样芽孢杆菌 Bacillus cereus | 无机盐培养基,30 ℃,pH 8.0,50 mg·L-1磺胺二甲嘧啶 Inorganic salt medium, 30 ℃, pH 8.0, 50 mg·L-1 sulfamethazine | 36 | 100.0 | [ | ||
磺胺多辛 Sulfadoxine | 假单胞菌属 Pseudomonas sp. | 无机盐培养基,30 ℃,pH 6.0,30 mg·L-1磺胺多辛 Inorganic salt medium, 30 ℃, pH 6.0, 30 mg·L-1 sulfadoxine | 48 | 30.0 | [ | |
磺胺吡啶 Sulfapyridine | 大肠埃希菌属 Escherichia sp. | 无机盐培养基,30 ℃,10 mg·L-1磺胺吡啶 Inorganic salt medium, 30 ℃, 10 mg·L-1 sulfapyridine | 48 | 66.0 | [ | |
磺胺噻唑 Sulfathiazole | 不动杆菌属 Acinetobacter sp. | 无机盐培养基,30 ℃,10 mg·L-1磺胺噻唑 Inorganic salt medium, 30 ℃, 10 mg·L-1 sulfathiazole | 48 | 45.0 | [ | |
磺胺甲恶唑 Sulfamethoxazole | 复合菌株(成晶节杆菌、红平红球菌Mixed strains (Arthrobacter crystallopoietes, Rhodococcus erythropolis) | 无机盐培养基,31.5 ℃,10 mg·L-1磺胺甲恶唑 Inorganic salt medium, 31.5 ℃, 10 mg·L-1 sulfamethoxazole | 72 | >12.0 | [ | |
喹诺酮类 Quinolones | 诺氟沙星 Norfloxacin | 微紫青霉 Penicillium janthinellum | 无机盐培养基,30 ℃,pH 7.0,1.5 mg·L-1诺氟沙星 Inorganic salt medium, 30 ℃, pH 7.0, 1.5 mg·L-1 norfloxacin | 168 | 10.6 | [ |
山羊葡萄球菌 Staphylococcus caprae | 无机盐培养基,30 ℃,pH 7.0,5 mg·L-1诺氟沙星 Inorganic salt medium, 30 ℃, pH 7.0, 5 mg·L-1 norfloxacin | 240 | 92.6 | [ | ||
嗜热菌属 Thermus sp. | 无机盐培养基,70 ℃,10 mg·L-1诺氟沙星 Inorganic salt medium, 70 ℃, 10 mg·L-1 norfloxacin | 72 | 66.0 | [ | ||
恩诺沙星 Enrofloxacin | 嗜热菌属 Thermus sp. | 无机盐培养基,70 ℃,10 mg·L-1恩诺沙星 Inorganic salt medium, 70 ℃, 10 mg·L-1 enrofloxacin | 168 | 80.0 | [ | |
普罗威登斯菌属 Providencia sp. | 无机盐培养基,8 ℃,500 μg·L-1恩诺沙星 Inorganic salt medium, 8 ℃, 500 μg·L-1 enrofloxacin | 336 | 33.7 | [ | ||
粪肠球菌 Enterococcus faecalis | 丰富培养基,33.6 ℃,pH 5.8,100 mg·L-1恩诺沙星 Rich medium, 33.6 ℃, pH 5.8, 100 mg·L-1 enrofloxacin | 96 | 77.8 | [ | ||
氨基糖苷类 Aminoglycosides | 庆大霉素 Gentamicin | 缺陷短波单胞菌 Brevundimonas diminuta | 丰富培养基,30 °C,pH 8.0, 100 mg·L-1庆大霉素 Rich medium, 30 ℃, pH 8.0, 100 mg·L-1 gentamicin | 168 | 41.4 | [ |
土曲霉 Aspergillus terreus | 丰富培养基,30 °C,pH 6.0,100 mg·L-1庆大霉素 Rich medium, 30 ℃, pH 6.0, 100 mg·L-1 gentamicin | 168 | 95.0 | [ | ||
复合菌株(寡养单胞菌属、鞘氨醇单胞菌属、土壤杆菌属) Mixed strains (Stenotrophomonas sp., Sphingomonas sp., Agrobacterium sp.) | 无机盐培养基,37 ℃,pH 7.2, 1 000 mg·L-1庆大霉素 Rich medium, 37 ℃, pH 7.2, 1 000 mg·L-1 gentamicin | 168 | 71.5 | [ | ||
氯霉素类 Chloram- phenicol | 氯霉素 Chloram- phenicol | 红球菌 Rhodococcus sp. | 无机盐培养基,30 ℃,50 mg·L-1氯霉素 Inorganic salt medium, 30 ℃, 50 mg·L-1 chloramphenicol | 42 | 99.6 | [ |
假单胞菌属 Pseudomonas sp. | 无机盐培养基,20 ℃,pH 7.0,300 mg·L-1氯霉素 Inorganic salt medium, 20 ℃, pH 7.0, 300 mg·L-1 chloramphenicol | 48 | 72.6 | [ | ||
β-内酰胺类 β-lactams | 头孢克肟 Cefixime | 无色杆菌属 Achromobacter sp. | 丰富培养基,37 ℃,pH 6.0~7.0,100 mg·L-1头孢克肟 Rich medium, 37 ℃, pH 6.0-7.0, 100 mg·L-1 cefixime | 168 | 92.7 | [ |
青霉素 Penicillin | 螯合球菌属 Chelatococcus sp. | 丰富培养基,37 ℃,pH 6.0~8.0, 400 mg·L-1青霉素 Rich medium, 37 ℃, pH 6.0-8.0, 400 mg·L-1 penicillin | 6 | 98.0 | [ | |
黏质红酵母属 Rhodotorula mucilaginosa | 丰富培养基,30 ℃,20 g·L-1青霉素 Rich medium, 30 ℃, 20 g·L-1 penicillin | 24 | 85.0 | [ |
[1] | ZHAO C X, XIN L Q, XU X K, et al. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes[J]. Journal of Hazardous Materials, 2022, 424: 127526. |
[2] | WANG J L, CHU L B, WOJNÁROVITS L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview[J]. Science of the Total Environment, 2020, 744: 140997. |
[3] | YU J J, KIWI J, ZIVKOVIC I, et al. Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline[J]. Applied Catalysis B: Environmental, 2019, 248: 450-458. |
[4] | LI S N, ZHANG C F, LI F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review[J]. Journal of Hazardous Materials, 2021, 411: 125148. |
[5] | WILLYARD C. The drug-resistant bacteria that pose the greatest health threats[J]. Nature, 2017, 543(7643): 15. |
[6] | GRENNI P, ANCONA V, BARRA CARACCIOLO A. Ecological effects of antibiotics on natural ecosystems: a review[J]. Microchemical Journal, 2018, 136: 25-39. |
[7] | ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. |
[8] | 裴新荣, 罗飞亚, 王学硕, 等. 2016—2018年中国淡水产品中抗生素残留状况分析[J]. 现代预防医学, 2019, 46(23): 4272-4275. |
PEI X R, LUO F Y, WANG X S, et al. Antibiotics residue in aquatic products in China, 2016-2018[J]. Modern Preventive Medicine, 2019, 46(23): 4272-4275. (in Chinese with English abstract) | |
[9] | 程兆康, 杨金山, 吕敏, 等. 我国畜禽养殖业抗生素的使用特征及其环境与健康风险[J]. 农业资源与环境学报, 2022, 39(6): 1253-1262. |
CHENG Z K, YANG J S, LÜ M, et al. Antibiotics used in livestock and poultry breeding and its environmental and health risks in China: a review[J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1253-1262. (in Chinese with English abstract) | |
[10] | 2020年中国兽用抗菌药使用情况报告[N]. 中国畜牧兽医报, 2021-11-14(3). |
[11] | 王建华, 钭露露, 王缘. 环境规制政策情境下农业市场化对畜禽养殖废弃物资源化处理行为的影响分析[J]. 中国农村经济, 2022(1): 93-111. |
WANG J H, TOU L L, WANG Y. The impact of agricultural marketization on livestock waste resource utilization in the context of environmental regulation policy[J]. Chinese Rural Economy, 2022(1): 93-111. (in Chinese with English abstract) | |
[12] | 潘丹, 孔凡斌. 基于扎根理论的畜禽养殖废弃物循环利用分析: 农户行为与政策干预路径[J]. 江西财经大学学报, 2018(3): 95-104. |
PAN D, KONG F B. An analysis of waste cyclic utilization in livestock breeding based on the grounded theory: farmers’ behavior and policy intervention paths[J]. Journal of Jiangxi University of Finance and Economics, 2018(3): 95-104. (in Chinese with English abstract) | |
[13] | 姚升, 王光宇. 基于分区视角的畜禽养殖粪便农田负荷量估算及预警分析[J]. 华中农业大学学报(社会科学版), 2016(1): 72-84. |
YAO S, WANG G Y. Study on estimation and warning of farmland load of livestock and poultry: based on zoning perspective[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2016(1): 72-84. (in Chinese with English abstract) | |
[14] | 王云, 王婧怡, 李佳佳. 基于文献计量的养殖废弃物肥料化研究进展[J]. 江苏农业科学, 2021, 49(10): 36-42. |
WANG Y, WANG J Y, LI J J. Research progress on fertilization of livestock and poultry waste based on bibliometrics[J]. Jiangsu Agricultural Sciences, 2021, 49(10): 36-42. (in Chinese) | |
[15] | 恽云波, 邓欧平. 四川省农村有机废物能源化的区域管理规划方案: 以崇州地区为例[J]. 四川农业大学学报, 2018, 36(5): 665-673. |
YUN Y B, DENG O P. Regional resource management of energetic utilization of rural organic waste in Sichuan Province: a case study in Chongzhou[J]. Journal of Sichuan Agricultural University, 2018, 36(5): 665-673. (in Chinese with English abstract) | |
[16] | 汪开英, 张贇, 朱晓莲. 畜禽废弃物的基质化处理研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(5): 598-602. |
WANG K Y, ZHANG Y, ZHU X L. Study on organic substrate production by composting swine manure[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2005, 31(5): 598-602. (in Chinese with English abstract) | |
[17] | 宣梦, 许振成, 吴根义, 等. 我国规模化畜禽养殖粪污资源化利用分析[J]. 农业资源与环境学报, 2018, 35(2): 126-132. |
XUAN M, XU Z C, WU G Y, et al. Analysis of utilization of fecal resources in large-scale livestock and poultry breeding in China[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 126-132. (in Chinese with English abstract) | |
[18] | 胡曾曾, 于法稳, 赵志龙. 畜禽养殖废弃物资源化利用研究进展[J]. 生态经济, 2019, 35(8): 186-193. |
HU Z Z, YU F W, ZHAO Z L. Review of research on the utilization of livestock and poultry waste in China[J]. Ecological Economy, 2019, 35(8): 186-193. (in Chinese with English abstract) | |
[19] | 胡向东, 黄仁, 何忠伟. 畜禽规模养殖场废弃物处理的现状分析[J]. 江苏农业科学, 2014, 42(1): 302-304. |
HU X D, HUANG R, HE Z W. Analysis on the present situation of waste treatment in large-scale livestock and poultry farms[J]. Jiangsu Agricultural Sciences, 2014, 42(1): 302-304. (in Chinese) | |
[20] | 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662. |
ZHANG Y, YAN X J, SUN Y, et al. Current situation of antibiotic abuse in China and its residues distribution in the environment[J]. Contemporary Chemical Industry, 2019, 48(11): 2660-2662. (in Chinese with English abstract) | |
[21] | TISEO K, HUBER L, GILBERT M, et al. Global trends in antimicrobial use in food animals from 2017 to 2030[J]. Antibiotics, 2020, 9(12): 918. |
[22] | CULLY M. Public health: the politics of antibiotics[J]. Nature, 2014, 509(7498): S16-S17. |
[23] | 余佩瑶, 刘寒冰, 邓艳玲, 等. 畜禽粪便中抗生素污染特征及堆肥化去除研究进展[J]. 环境化学, 2019, 38(2): 334-343. |
YU P Y, LIU H B, DENG Y L, et al. Research progress on contamination characteristics and composting removal of antibiotics in livestock manure[J]. Environmental Chemistry, 2019, 38(2): 334-343. (in Chinese with English abstract) | |
[24] | VAN BOECKEL T P, BROWER C, GILBERT M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5649-5654. |
[25] | 徐军. 畜禽养殖中抗生素使用现状及改进措施[J]. 畜牧兽医科学(电子版), 2021(22): 126-127. |
XU J. Present situation and improvement measures of antibiotics in animal epidemic disease control[J]. Graziery Veterinary Sciences(Electronic Version), 2021(22): 126-127. (in Chinese with English abstract) | |
[26] | LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. |
[27] | 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270. |
WANG R, LIU T Z, WANG T. The fate of antibiotics in environment and its ecotoxicology: a review[J]. Acta Ecologica Sinica, 2006, 26(1): 265-270. (in Chinese with English abstract) | |
[28] | 袁钰龙, 刘冬梅, 向荣程, 等. 大环内酯类抗生素微生物降解的研究进展[J]. 生物工程学报, 2021, 37(9): 3129-3141. |
YUAN Y L, LIU D M, XIANG R C, et al. Advances in biodegradation of macrolide antibiotics[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3129-3141. (in Chinese with English abstract) | |
[29] | 韩秉君, 牟美睿, 杨凤霞, 等. 畜禽养殖环境中抗生素抗性基因污染与扩散研究进展[J]. 农业资源与环境学报, 2022, 39(3): 446-455. |
HAN B J, MU M R, YANG F X, et al. Progress of antibiotic resistance gene contamination and diffusion in livestock and poultry farming environments[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 446-455. (in Chinese with English abstract) | |
[30] | 成登苗, 李兆君, 张雪莲, 等. 畜禽粪便中兽用抗生素削减方法的研究进展[J]. 中国农业科学, 2018, 51(17): 3335-3352. |
CHENG D M, LI Z J, ZHANG X L, et al. Removal of veterinary antibiotics in livestock and poultry manure: a review[J]. Scientia Agricultura Sinica, 2018, 51(17): 3335-3352. (in Chinese with English abstract) | |
[31] | LI C, CHEN J Y, WANG J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521/522: 101-107. |
[32] | ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5): 1069-1075. |
[33] | WANG H, CHU Y X, FANG C R. Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4): 472-477. |
[34] | 任君焘, 徐琳. 山东东营地区畜禽粪便中抗生素残留研究[J]. 黑龙江畜牧兽医, 2019(6): 56-59. |
REN J T, XU L. Study on antibiotic residues in livestock manure in Dongying, Shandong Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(6): 56-59. (in Chinese) | |
[35] | 彭秋, 王卫中, 徐卫红. 重庆市畜禽粪便及菜田土壤中四环素类抗生素生态风险评价[J]. 环境科学, 2020, 41(10): 4757-4766. |
PENG Q, WANG W Z, XU W H. Ecological risk assessment of tetracycline antibiotics in livestock manure and vegetable soil of Chongqing[J]. Environmental Science, 2020, 41(10): 4757-4766. (in Chinese with English abstract) | |
[36] | ALAVI N, BABAEI A A, SHIRMARDI M, et al. Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province, Iran[J]. Environmental Science and Pollution Research, 2015, 22(22): 17948-17954. |
[37] | EZZARIAI A, HAFIDI M, KHADRA A, et al. Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes[J]. Journal of Hazardous Materials, 2018, 359: 465-481. |
[38] | 陈笑雪, 王智源, 管仪庆, 等. 淡水环境中抗生素抗性基因的来源、归趋和风险[J]. 生态毒理学报, 2021, 16(3): 14-27. |
CHEN X X, WANG Z Y, GUAN Y Q, et al. Source, fate and risk of antibiotic resistance genes in freshwater environment[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 14-27. (in Chinese with English abstract) | |
[39] | CHENG D L, NGO H H, GUO W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621: 1664-1682. |
[40] | 陈军平, 杨艳丽, 吴志强, 等. 江西省畜禽养殖废水及环境中抗生素残留现状调查[J]. 安徽农业科学, 2015, 43(31): 224-227. |
CHEN J P, YANG Y L, WU Z Q, et al. Pollution of antibiotics in livestock wastewater and the environmental water in Jiangxi Province[J]. Journal of Anhui Agricultural Sciences, 2015, 43(31): 224-227. (in Chinese with English abstract) | |
[41] | QIAN M R, WU H Z, WANG J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174-181. |
[42] | LI X W, XIE Y F, LI C L, et al. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment, 2014, 468/469: 258-264. |
[43] | KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251: 126351. |
[44] | 何玉洁, 周凯萍, 饶怡璇, 等. 土壤中抗生素的环境风险及污染土壤的生物修复技术[J]. 生物工程学报, 2021, 37(10): 3487-3504. |
HE Y J, ZHOU K P, RAO Y X, et al. Environmental risks of antibiotics in soil and the related bioremediation technologies[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3487-3504. (in Chinese with English abstract) | |
[45] | ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. |
[46] | 常静, 李蕴华, 凤英, 等. 畜禽粪污源抗生素污染对土壤和作物的潜在风险及对策[J]. 畜牧与饲料科学, 2020, 41(6): 50-55. |
CHANG J, LI Y H, F Y, et al. Potential risk of antibiotic contamination to soil and crops from livestock and poultry manure and its countermeasures[J]. Animal Husbandry and Feed Science, 2020, 41(6): 50-55. (in Chinese with English abstract) | |
[47] | 沈聪, 张俊华, 刘吉利, 等. 宁夏养鸡场粪污和周边土壤中抗生素及抗生素抗性基因分布特征[J]. 环境科学, 2022, 43(8): 4166-4178. |
SHEN C, ZHANG J H, LIU J L, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in manure and surrounding soil of poultry farm in Ningxia[J]. Environmental Science, 2022, 43(8): 4166-4178. (in Chinese with English abstract) | |
[48] | WU X L, XIANG L, YAN Q Y, et al. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China[J]. Science of the Total Environment, 2014, 487: 399-406. |
[49] | 周椿富, 于锐, 王翔, 等. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 2022, 31(11): 2234-2241. |
ZHOU C F, YU R, WANG X, et al. Effects of antibiotics on soil enzyme activities in different soils[J]. Ecology and Environmental Sciences, 2022, 31(11): 2234-2241. (in Chinese with English abstract) | |
[50] | 方林发, 叶苹苹, 方标, 等. 重庆开州区菜地土壤抗生素污染特征及潜在生态环境风险评估[J]. 环境科学, 2022, 43(11): 5244-5252. |
FANG L F, YE P P, FANG B, et al. Pollution characteristics and ecological risk assessment of antibiotics in vegetable field in Kaizhou, Chongqing[J]. Environmental Science, 2022, 43(11): 5244-5252. (in Chinese with English abstract) | |
[51] | 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. |
ZHANG H J, WANG X X, LI Y. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181. (in Chinese with English abstract) | |
[52] | 张垚, 王静. 水环境抗生素残留及其生态与健康影响[J]. 湖北医药学院学报, 2019, 38(6): 609-614. |
ZHANG Y, WANG J. Antibiotic residues in water environment and their ecological and health effects[J]. Journal of Hubei University of Medicine, 2019, 38(6): 609-614. (in Chinese) | |
[53] | 梁艳琼, 贺春萍, 郑肖兰, 等. 解磷细菌对7种常见抗生素的抗性研究[J]. 中国农学通报, 2013, 29(33): 207-213. |
LIANG Y Q, HE C P, ZHENG X L, et al. Phosphate-solubilizing bacteria resistance research to seven common antibiotics[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 207-213. (in Chinese with English abstract) | |
[54] | DEVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: a review[J]. Current Pollution Reports, 2016, 2(1): 51-67. |
[55] | 龙婷婷. 四环素类抗生素对生物脱氮除磷的影响研究[D]. 湘潭: 湘潭大学, 2019. |
LONG T T. Effect of the tetracyclines on biological nitrogen and phosphorus removal from wastewater[D]. Xiangtan: Xiangtan University, 2019. (in Chinese with English abstract) | |
[56] | CHUNG H S, LEE Y J, RAHMAN M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J]. Science of the Total Environment, 2017, 605/606: 322-331. |
[57] | 王敏, 唐景春. 土壤中的抗生素污染及其生态毒性研究进展[J]. 农业环境科学学报, 2010, 29(S1): 261-266. |
WANG M, TANG J C. Research of antibiotics pollution in soil environments and its ecological toxicity[J]. Journal of Agro-Environment Science, 2010, 29(S1): 261-266. (in Chinese with English abstract) | |
[58] | 李彦文, 张艳, 莫测辉, 等. 广州市蔬菜中喹诺酮类抗生素污染特征及健康风险初步研究[J]. 环境科学, 2010, 31(10): 2445-2449. |
LI Y W, ZHANG Y, MO C H, et al. Preliminary study on occurrence and health risk assessment of quinolone antibiotics in vegetables from Guangzhou, China[J]. Environmental Science, 2010, 31(10): 2445-2449. (in Chinese with English abstract) | |
[59] | CHEN J, YING G G, DENG W J. Antibiotic residues in food: extraction, analysis, and human health concerns[J]. Journal of Agricultural and Food Chemistry, 2019, 67(27): 7569-7586. |
[60] | 贝亦江, 周钦, 周以琳, 等. 2018—2019年浙江省养殖水产品中6种喹诺酮类药物残留分析及风险评估[J]. 食品安全质量检测学报, 2021, 12(5): 2011-2017. |
BEI Y J, ZHOU Q, ZHOU Y L, et al. Analysis and risk assessment of 6 quinolones residues in aquatic products in Zhejiang Province from 2018 to 2019[J]. Journal of Food Safety & Quality, 2021, 12(5): 2011-2017. (in Chinese with English abstract) | |
[61] | BACANLı M, BAŞARAN N. Importance of antibiotic residues in animal food[J]. Food and Chemical Toxicology, 2019, 125: 462-466. |
[62] | XIE X J, ZHOU Q X, LIN D S, et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.)[J]. Environmental Science and Pollution Research, 2011, 18(4): 566-575. |
[63] | 李纤慧, 李建政, 张成成, 等. 畜禽粪便中抗生素抗性基因的分布特征及消减技术研究进展[J]. 微生物学报, 2022, 62(12): 4740-4755. |
LI X H, LI J Z, ZHANG C C, et al. Distribution characteristics of antibiotic resistance genes in livestock manure and the reduction techniques: a review[J]. Acta Microbiologica Sinica, 2022, 62(12): 4740-4755. (in Chinese with English abstract) | |
[64] | QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. |
[65] | 蔡天贵, 张龙, 张晋东. 抗生素抗性基因的生态风险研究进展[J]. 应用生态学报, 2022, 33(5): 1435-1440. |
CAI T G, ZHANG L, ZHANG J D. Research advances in ecological risk of antibiotic resistance genes[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1435-1440. (in Chinese with English abstract) | |
[66] | HUDDLESTON J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes[J]. Infection and Drug Resistance, 2014, 7: 167-176. |
[67] | LIU B T, YU K F, AHMED I, et al. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: a review[J]. Science of the Total Environment, 2021, 791: 148372. |
[68] | 冯天舒, 俞巧玲, 周蕊, 等. 高原鼠兔和高原鼢鼠肠道微生物组及常见抗生素抗性基因的比较[J]. 野生动物学报, 2020, 41(4): 897-911. |
FENG T S, YU Q L, ZHOU R, et al. The comparison of gut microbiome and common antibiotic resistance genes between plateau pika and plateau zokor[J]. Chinese Journal of Wildlife, 2020, 41(4): 897-911. (in Chinese with English abstract) | |
[69] | 卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. |
WEI C F, LI J L, SUN Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399. (in Chinese with English abstract) | |
[70] | 黄丹, 叶茂, 朱国繁, 等. 抗生素/抗性细菌/抗性基因在土壤-植物系统中迁移转化及阻控消减的研究进展[J]. 土壤, 2020, 52(5): 891-900. |
HUANG D, YE M, ZHU G F, et al. Migration and risk control of antibiotic and antibiotic resistance bacteria/genes in soil-plant system: a review[J]. Soils, 2020, 52(5): 891-900. (in Chinese with English abstract) | |
[71] | 李妍, 张一清, 于昌平, 等. 地表水中典型磺胺类抗生素的自然衰减[J]. 环境化学, 2021, 40(3): 696-705. |
LI Y, ZHANG Y Q, YU C P, et al. Natural attenuation behavior of typical sulfonamides in the surface water[J]. Environmental Chemistry, 2021, 40(3): 696-705. (in Chinese with English abstract) | |
[72] | 王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 2021, 51(6): 615-636. |
WANG X J, ZHAO W, ZHANG Z C, et al. Veterinary antibiotics in soils: environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica Technologica, 2021, 51(6): 615-636. (in Chinese with English abstract) | |
[73] | WANG S L, WANG H. Adsorption behavior of antibiotic in soil environment: a critical review[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 565-574. |
[74] | 李威, 李佳熙, 李吉平, 等. 我国不同环境介质中的抗生素污染特征研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 205-214. |
LI W, LI J X, LI J P, et al. Pollution characteristics of antibiotics in different environment media in China: a review[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 205-214. (in Chinese with English abstract) | |
[75] | CHEN C Q, LI J, CHEN P P, et al. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China[J]. Environmental Pollution, 2014, 193: 94-101. |
[76] | ZHANG M Q, YUAN L, LI Z H, et al. Tetracycline exposure shifted microbial communities and enriched antibiotic resistance genes in the aerobic granular sludge[J]. Environment International, 2019, 130: 104902. |
[77] | ZHI D, YANG D X, ZHENG Y X, et al. Current progress in the adsorption, transport and biodegradation of antibiotics in soil[J]. Journal of Environmental Management, 2019, 251: 109598. |
[78] | GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: a review[J]. CLEAN: Soil, Air, Water, 2015, 43(4): 479-489. |
[79] | WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field[J]. Environmental Pollution, 2017, 231: 954-970. |
[80] | XU J, HAO Z N, GUO C S, et al. Photodegradation of sulfapyridine under simulated sunlight irradiation: kinetics, mechanism and toxicity evolvement[J]. Chemosphere, 2014, 99: 186-191. |
[81] | 邵思城. 微生物降解四环素和土霉素的研究[D]. 广州: 华南理工大学, 2019. |
SHAO S C. Study on microbial degradation of tetracycline and oxytetracycline[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract) | |
[82] | 许双燕, 张涛, 张成, 等. 一株红霉素降解菌的筛选、鉴定与降解特性[J]. 浙江农业学报, 2021, 33(1): 131-141. |
XU S Y, ZHANG T, ZHANG C, et al. Isolation and identification of an erythromycin degradation bacterium strain and its biodegradation characteristics[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 131-141. (in Chinese with English abstract) | |
[83] | 毛菲菲, 刘畅, 何梦琦, 等. 红霉素降解菌的筛分及其降解特性的研究[J]. 环境科学与技术, 2013, 36(7): 9-12. |
MAO F F, LIU C, HE M Q, et al. Isolation and identification of an erythromycin degradation bacterium and study on its biodegradation characteristics[J]. Environmental Science & Technology, 2013, 36(7): 9-12. (in Chinese with English abstract) | |
[84] | BHATT P, JEON C H, KIM W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant[J]. Chemosphere, 2022, 298: 134344. |
[85] | 成洁, 杜慧玲, 张天宝, 等. 四环素类抗生素降解菌的分离与鉴定[J]. 核农学报, 2017, 31(5): 884-888. |
CHENG J, DU H L, ZHANG T B, et al. Isolation and identification of tetracyclines degrading bacteria[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 884-888. (in Chinese with English abstract) | |
[86] | 吴学玲, 吴晓燕, 李交昆, 等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018, 34(5): 172-178. |
WU X L, WU X Y, LI J K, et al. Isolation and degradation characteristics of a efficient tetracycline-degrading strain[J]. Biotechnology Bulletin, 2018, 34(5): 172-178. (in Chinese with English abstract) | |
[87] | 张小红, 王亚娟, 陶红, 等. 一株同时降解4种四环素类抗生素降解菌的筛选及降解特性[J]. 环境化学, 2022, 41(8): 2761-2770. |
ZHANG X H, WANG Y J, TAO H, et al. Screened and degradation characteristics of a four tetracycline antibiotics degrading bacterium[J]. Environmental Chemistry, 2022, 41(8): 2761-2770. (in Chinese with English abstract) | |
[88] | QI W N, LONG J, FENG C Q, et al. Fe3+ enhanced degradation of oxytetracycline in water by Pseudomonas[J]. Water Research, 2019, 160: 361-370. |
[89] | 孟应宏, 冯瑶, 黎晓峰, 等. 土霉素降解菌筛选及降解特性研究[J]. 植物营养与肥料学报, 2018, 24(3): 720-727. |
MENG Y H, FENG Y, LI X F, et al. Isolation of an oxytetracycline-degrading bacterial strain and its biodegradation characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 720-727. (in Chinese with English abstract) | |
[90] | 王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018, 35(6): 533-539. |
WANG Q F, ZHU P L, XIA Z M, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. Journal of Agricultural Resources and Environment, 2018, 35(6): 533-539. (in Chinese with English abstract) | |
[91] | DU Y Q, CHENG Q L, QIAN M R, et al. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA: performance, degradation pathways, and mechanisms[J]. Journal of Hazardous Materials, 2023, 452: 131186. |
[92] | 张珈瑜, 彭星星, 贾晓珊. 磺胺二甲基嘧啶(SM2)高效降解菌J2的分离筛选及降解特性研究[J]. 环境科学学报, 2019, 39(9): 2919-2927. |
ZHANG J Y, PENG X X, JIA X S. Isolation and characterization of highly efficient sulfamethazine-degrading bacterium strain J2[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2919-2927. (in Chinese with English abstract) | |
[93] | ZHANG W W, XU D X, NIU Z L, et al. Isolation and characterization of Pseudomonas sp. DX7 capable of degrading sulfadoxine[J]. Biodegradation, 2012, 23(3): 431-439. |
[94] | ZHANG W W, WEN Y Y, NIU Z L, et al. Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51[J]. World Journal of Microbiology and Biotechnology, 2012, 28(2): 447-452. |
[95] | 李连城. 磺胺类抗生素高效降解菌株筛选及其降解特性研究[D]. 西安: 西安建筑科技大学, 2020. |
LI L C. Screening of high efficient degradation strains of sulfonamides and their degradation characteristics[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. (in Chinese with English abstract) | |
[96] | 付泊明, 陈立伟, 蔡天明, 等. 诺氟沙星降解菌NOR-36的分离筛选及降解特性研究[J]. 环境科学学报, 2017, 37(2): 576-584. |
FU B M, CHEN L W, CAI T M, et al. Isolation and characterization of norfloxacin-degrading bacterium strain NOR-36[J]. Acta Scientiae Circumstantiae, 2017, 37(2): 576-584. (in Chinese with English abstract) | |
[97] | 潘兰佳, 李杰, 李春星, 等. 嗜热栖热菌降解氟喹诺酮类抗生素[J]. 环境工程学报, 2020, 14(4): 1092-1102. |
PAN L J, LI J, LI C X, et al. Biodegradation of fluoroquinolones by Thermus thermophilus[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1092-1102. (in Chinese with English abstract) | |
[98] | 苏一鸣, 王英刚, 蔺昕, 等. 低温条件下恩诺沙星的微生物降解研究[J/OL]. 生态与农村环境学报. (2022-10-18) [2023-02-23]. https://doi.org/10.19741/j.issn.1673-4831.2022.0407. |
SU Y M, WANG Y G, LIN X, et al. Study on microbial degradation of enrofloxacin at low temperatures[J/OL]. Journal of Ecology and Rural Environment. (2022-10-18) [2023-02-23]. https://doi.org/10.19741/j.issn.1673-4831.2022.0407. (in Chinese with English abstract) | |
[99] | 李永杰, 卜文静, 张会敏, 等. 庆大霉素降解菌的筛选及效果验证[J]. 环境科学与技术, 2021, 44(4): 125-130. |
LI Y J, BU W J, ZHANG H M, et al. Screening of gentamicin-degrading bacteria and the verification of their effect[J]. Environmental Science & Technology, 2021, 44(4): 125-130. (in Chinese with English abstract) | |
[100] | 史可, 郭晨蕾, 马晓丹, 等. 一株氯霉素降解细菌的分离鉴定与代谢特性研究[J]. 生物工程学报, 2021, 37(10): 3653-3662. |
SHI K, GUO C L, MA X D, et al. Isolation, identification and characterization of a chloramphenicol-degrading bacterium[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3653-3662. (in Chinese with English abstract) | |
[101] | 陈茂祥, 夏灵恩, 毛乐佳, 等. 氯霉素降解菌的分离筛选及降解性能研究[J]. 安徽农业科学, 2021, 49(9): 61-65. |
CHEN M X, XIA L E, MAO L J, et al. Study on isolation and screening of chloramphenicol degrading bacteria and degradation property[J]. Journal of Anhui Agricultural Sciences, 2021, 49(9): 61-65. (in Chinese with English abstract) | |
[102] | YANG J, ZHAO Z Q, WANG M, et al. Biodegradation of tylosin in swine wastewater by Providencia stuartii TYL-Y13: performance, pathway, genetic background, and risk assessment[J]. Journal of Hazardous Materials, 2022, 440: 129716. |
[103] | ZHANG T, XU S Y, LIN H, et al. Efficient degradation of tylosin by Klebsiella oxytoca TYL-T1[J]. Science of the Total Environment, 2022, 847: 157305. |
[104] | 张涛, 张锦, 史艳可, 等. 产酸克雷伯氏菌胞内粗酶液降解泰乐菌素[J]. 生物学杂志, 2022, 39(5): 65-71. |
ZHANG T, ZHANG J, SHI Y K, et al. Biodegradation of tylosin by intracellular crude enzyme solution of Klebsiella oxytoca[J]. Journal of Biology, 2022, 39(5): 65-71. (in Chinese with English abstract) | |
[105] | 孙瑞珠, 马玉龙, 张娟, 等. 一株泰乐菌素高效降解菌的分离鉴定及其降解特性[J]. 微生物学通报, 2014, 41(4): 681-690. |
SUN R Z, MA Y L, ZHANG J, et al. Isolation and identification of a tylosin-degrading strain and its degradation characteristics[J]. Microbiology China, 2014, 41(4): 681-690. (in Chinese with English abstract) | |
[106] | 张娟, 马玉龙, 孙瑞珠, 等. 泰乐菌素降解菌的分离及其酶促特性[J]. 环境科学与技术, 2014, 37(4): 1-6. |
ZHANG J, MA Y L, SUN R Z, et al. Isolation of a tylosin-degrading bacteria and characteristics of enzymatic degradation[J]. Environmental Science & Technology, 2014, 37(4): 1-6. (in Chinese with English abstract) | |
[107] | 张欣阳, 蔡婷静, 许旭萍. 一株高效四环素降解菌的分离鉴定及其降解性能研究[J]. 生物技术通报, 2015, 31(1): 173-180. |
ZHANG X Y, CAI T J, XU X P. Isolation and identification of a tetracycline-degrading bacterium and optimizing condition for tetracycline degradation[J]. Biotechnology Bulletin, 2015, 31(1): 173-180. (in Chinese with English abstract) | |
[108] | 黄建凤, 张发宝, 逄玉万, 等. 1株四环素降解菌的分离鉴定及降解特性研究[J]. 微生物学杂志, 2017, 37(1): 50-56. |
HUANG J F, ZHANG F B, PANG Y W, et al. Isolation, identification and characteristics of a tetracycline-degradation bacterium[J]. Journal of Microbiology, 2017, 37(1): 50-56. (in Chinese with English abstract) | |
[109] | 康宗利, 刘爽, 杨建, 等. 四环素降解菌的筛选及降解特性研究[J]. 山西农业大学学报(自然科学版), 2022, 42(2): 79-88. |
KANG Z L, LIU S, YANG J, et al. Screening and degradation characteristics of tetracycline degrading bacteria[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(2): 79-88. (in Chinese with English abstract) | |
[110] | 陶美, 贺玉龙, 王林, 等. 四环素降解菌的筛选及其降解特性[J]. 应用与环境生物学报, 2018, 24(2): 384-389. |
TAO M, HE Y L, WANG L, et al. Screening and degradation characteristics of a tetracycline-degrading bacterial strain[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 384-389. (in Chinese with English abstract) | |
[111] | SHI Y K, LIN H, MA J W, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. Journal of Hazardous Materials, 2021, 403: 123996. |
[112] | 梅瀚杰, 陈喜鸿, 胡文锋, 等. 一株降解恩诺沙星菌株的筛选鉴定及其降解条件的优化[J]. 食品工业科技, 2021, 42(5): 105-112. |
MEI H J, CHEN X H, HU W F, et al. Screening and identification of enrofloxacin degrading strain and optimization of its degradation conditions[J]. Science and Technology of Food Industry, 2021, 42(5): 105-112. (in Chinese with English abstract) | |
[113] | LIU Y W, CHANG H Q, LI Z J, et al. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage[J]. Scientific Reports, 2017, 7: 11004. |
[114] | LIU Y W, CHANG H Q, LI Z J, et al. Gentamicin removal in submerged fermentation using the novel fungal strain Aspergillus terreus FZC3[J]. Scientific Reports, 2016, 6: 35856. |
[115] | 张永芳, 王明明, 张东旭, 等. 头孢菌素类降解菌Achromobacter sp. YF-1的筛选与功能鉴定[J]. 中国农业科技导报, 2019, 21(7): 112-119. |
ZHANG Y F, WANG M M, ZHANG D X, et al. Screening and functional identification of cephalosporin degrading bacteria Achromobacter sp. YF-1[J]. Journal of Agricultural Science and Technology, 2019, 21(7): 112-119. (in Chinese with English abstract) | |
[116] | 赵娟, 张振华, 段会英, 等. 青霉素菌渣堆肥过程中青霉素钠降解菌的分离与鉴定[J]. 环境科学研究, 2016, 29(2): 271-278. |
ZHAO J, ZHANG Z H, DUAN H Y, et al. Isolation and identification of a penicillin-degrading strain during composting of penicillin bacteria residue[J]. Research of Environmental Sciences, 2016, 29(2): 271-278. (in Chinese with English abstract) | |
[117] | 王礼君, 冯丽妍, 徐建中, 等. 一株高效降解青霉素菌的筛选及鉴定[J]. 食品与生物技术学报, 2020, 39(5): 89-94. |
WANG L J, FENG L Y, XU J Z, et al. Screening and identification of a high-efficiency penicillin sodium-degrading strain[J]. Journal of Food Science and Biotechnology, 2020, 39(5): 89-94. (in Chinese with English abstract) | |
[118] | 许航, 朱思橙, 张文辉, 等. 好氧活性污泥体系中磺胺类抗生素生物降解的研究进展[J]. 生物工程学报, 2021, 37(10): 3459-3474. |
XU H, ZHU S C, ZHANG W H, et al. Advances in biodegradation of sulfonamides antibiotics in aerobic activated sludge system[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3459-3474. (in Chinese with English abstract) | |
[119] | 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展[J]. 环境工程, 2020, 38(5): 36-42. |
LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: a review[J]. Environmental Engineering, 2020, 38(5): 36-42. (in Chinese with English abstract) | |
[120] | GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064. |
[121] | BACKHAUS T, KARLSSON M. Screening level mixture risk assessment of pharmaceuticals in STP effluents[J]. Water Research, 2014, 49: 157-165. |
[122] | 刘元望, 李兆君, 冯瑶, 等. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 2016, 35(2): 212-224. |
LIU Y W, LI Z J, FENG Y, et al. Research progress in microbial degradation of antibiotics[J]. Journal of Agro-Environment Science, 2016, 35(2): 212-224. (in Chinese with English abstract) | |
[123] | 吴迎, 冯朋雅, 李荣, 等. 环境抗生素污染的微生物修复进展[J]. 生物工程学报, 2019, 35(11): 2133-2150. |
WU Y, FENG P Y, LI R, et al. Progress in microbial remediation of antibiotic-residue contaminated environment[J]. Chinese Journal of Biotechnology, 2019, 35(11): 2133-2150. (in Chinese with English abstract) | |
[124] | LENG Y F, BAO J G, CHANG G F, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 2016, 318: 125-133. |
[125] | 黄升, 王建华. 结构修饰性四环素类抗生素研究进展[J]. 畜禽业, 2016(10): 14-17. |
HUANG S, WANG J H. Research progress in the tetracyclines modification[J]. Livestock and Poultry Industry, 2016(10): 14-17. (in Chinese with English abstract) | |
[126] | 蒋晨阳. 四环素降解菌的筛选及应用[D]. 长沙: 中南林业科技大学, 2021. |
JIANG C Y. Screening and application of tetracycline degrading bacteria[D]. Changsha: Central South University of Forestry & Technology, 2021. (in Chinese with English abstract) | |
[127] | 冷一非. 微生物降解四环素特性及降解机理研究[D]. 武汉: 中国地质大学, 2017. |
LENG Y F. Characteristics and mechanism of tetracycline degradation by microorganism[D]. Wuhan: China University of Geosciences, 2017. (in Chinese with English abstract) | |
[128] | 庞富华, 冯启柱, 周异欢, 等. 1, 2, 3-三唑磺胺类化合物的合成及抗菌活性[J]. 精细化工, 2019, 36(1): 106-110. |
PANG F H, FENG Q Z, ZHOU Y H, et al. Synthesis and antibacterial activities of sulfonamides derivatives bearing 1, 2, 3-triazole moiety[J]. Fine Chemicals, 2019, 36(1): 106-110. (in Chinese with English abstract) | |
[129] | 杜秀红, 崔节虎, 刘隽, 等. 磺胺类药物金属配合物的研究进展[J]. 化学试剂, 2020, 42(12): 1415-1423. |
DU X H, CUI J H, LIU J, et al. Progress of sulfonamides metal complexes[J]. Chemical Reagents, 2020, 42(12): 1415-1423. (in Chinese with English abstract) | |
[130] | JIANG B C, LI A, CUI D, et al. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium[J]. Applied Microbiology and Biotechnology, 2014, 98(10): 4671-4681. |
[131] | 何芷晴. 副梭状芽孢杆菌S2对氧氟沙星和恩诺沙星生物转化的特性和机制研究[D]. 广州: 广州大学, 2021. |
HE Z Q. Characteristics and mechanism study on biotransformation of ofloxacin and enrofloxacin by Paraclostridium sp. S2[D]. Guangzhou: Guangzhou University, 2021. (in Chinese with English abstract) | |
[132] | 付泊明. 诺氟沙星降解菌NOR-36的分离筛选及降解特性研究[D]. 南京: 南京农业大学, 2016. |
FU B M. Study on isolation and characterization of norfloxacin-degrading bacterium strain NOR-36[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[133] | LIAO X B, LI B X, ZOU R S, et al. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure[J]. Environmental Science and Pollution Research, 2016, 23(8): 7911-7918. |
[134] | 白金顺, 王伟红, 李艳丽, 等. 我国猪粪中四环素类抗生素残留及好氧堆肥消减研究进展[J]. 中国土壤与肥料, 2022(3): 231-238. |
BAI J S, WANG W H, LI Y L, et al. Advances in residues of tetracyclines and its degradation by aerobic composting in pig manure in China[J]. Soil and Fertilizer Sciences in China, 2022(3): 231-238. (in Chinese with English abstract) | |
[135] | 李文兵. 牛粪好氧堆肥发酵及其肥料化利用研究[D]. 银川: 宁夏大学, 2021. |
LI W B. Study on aerobic composting of beef manure and its fertilizer utilization[D]. Yinchuan: Ningxia University, 2021. (in Chinese with English abstract) | |
[136] | 王孝芳, 万金鑫, 韦中, 等. 畜禽粪便堆肥过程中微生物群落演替[J]. 生物技术通报, 2022, 38(5): 13-21. |
WANG X F, WAN J X, WEI Z, et al. Succession of microbial communities during livestock manure composting[J]. Biotechnology Bulletin, 2022, 38(5): 13-21. (in Chinese with English abstract) | |
[137] | 赵彬涵, 孙宪昀, 黄俊, 等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报, 2021, 48(1): 223-240. |
ZHAO B H, SUN X Y, HUANG J, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes: a review[J]. Microbiology China, 2021, 48(1): 223-240. (in Chinese with English abstract) | |
[138] | 钟为章, 陈赛男, 李月, 等. 好氧堆肥对抗生素抗性基因的消长影响研究进展[J]. 应用化工, 2022, 51(7): 2057-2063. |
ZHONG W Z, CHEN S N, LI Y, et al. Research progress on the effect of aerobic composting on the growth and decline of antibiotic resistance genes[J]. Applied Chemical Industry, 2022, 51(7): 2057-2063. (in Chinese with English abstract) | |
[139] | 王晓醒, 郭雪琦, 冯瑶, 等. 堆肥过程中抗生素和耐药基因消减研究进展[J]. 农业环境科学学报, 2021, 40(11): 2383-2394. |
WANG X X, GUO X Q, FENG Y, et al. Progress of the degradation of antibiotics and the elimination of antibiotic resistance genes[J]. Journal of Agro-Environment Science, 2021, 40(11): 2383-2394. (in Chinese with English abstract) | |
[140] | FENG L, CASAS M E, OTTOSEN L D M, et al. Removal of antibiotics during the anaerobic digestion of pig manure[J]. Science of the Total Environment, 2017, 603/604: 219-225. |
[141] | 王振楠, 白默涵, 李晓晶, 等. 微生物降解四环素类抗生素的研究进展[J]. 农业环境科学学报, 2022, 41(12): 2779-2786. |
WANG Z N, BAI M H, LI X J, et al. Research progress on the microbial degradation of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2022, 41(12): 2779-2786. (in Chinese with English abstract) | |
[142] | KIM K R, OWENS G, OK Y S, et al. Decline in extractable antibiotics in manure-based composts during composting[J]. Waste Management, 2012, 32(1): 110-116. |
[143] | 孟磊, 杨兵, 薛南冬, 等. 高温堆肥对鸡粪中氟喹诺酮类抗生素的去除[J]. 农业环境科学学报, 2015, 34(2): 377-383. |
MENG L, YANG B, XUE N D, et al. Effect of high temperature composting on removal of fluoroquinolones in chicken manures[J]. Journal of Agro-Environment Science, 2015, 34(2): 377-383. (in Chinese with English abstract) | |
[144] | 潘兰佳, 唐晓达, 汪印. 畜禽粪便堆肥降解残留抗生素的研究进展[J]. 环境科学与技术, 2015, 38(S2): 191-198. |
PAN L J, TANG X D, WANG Y. Research progress of residual antibiotics degradation in livestock and poultry feces composting[J]. Environmental Science & Technology, 2015, 38(S2): 191-198. (in Chinese with English abstract) | |
[145] | 张海滨, 孟海波, 沈玉君, 等. 好氧堆肥微生物研究进展[J]. 中国农业科技导报, 2017, 19(3): 1-8. |
ZHANG H B, MENG H B, SHEN Y J, et al. Research progress on microbial aerobic composting[J]. Journal of Agricultural Science and Technology, 2017, 19(3): 1-8. (in Chinese with English abstract) | |
[146] | 汪少娜. 磺胺类抗生素对猪粪厌氧发酵的影响及其降解机理研究[D]. 北京: 北京科技大学, 2020. |
WANG S N. Effect of sulfanilamide antibiotics on anaerobic fermentation of swine manure and the biodegradation mechanism of sulfanilamide[D]. Beijing: University of Science and Technology Beijing, 2020. (in Chinese with English abstract) | |
[147] | 郑佳伦, 刘超翔, 刘琳, 等. 畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1): 37-47. |
ZHENG J L, LIU C X, LIU L, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry: a review[J]. Environmental Chemistry, 2017, 36(1): 37-47. (in Chinese with English abstract) | |
[148] | 李玮琳, 张昕, 马军伟, 等. 抗生素降解菌剂对猪粪堆肥腐熟和细菌群落演替的影响[J]. 环境科学, 2022, 43(10): 4789-4800. |
LI W L, ZHANG X, MA J W, et al. Effect of antibiotic-degrading bacteria on maturity and bacterial community succession during pig manure composting[J]. Environmental Science, 2022, 43(10): 4789-4800. (in Chinese with English abstract) | |
[149] | 赵晨光, 陈路鹏, 黄祚建, 等. 猪粪中四环素类抗生素降解菌的筛选及其在堆肥中的应用研究[J]. 家畜生态学报, 2020, 41(9): 53-58. |
ZHAO C G, CHEN L P, HUANG Z J, et al. Screening and application of tetracycline antibiotic degrading bacteria in pig manure composting process[J]. Journal of Domestic Animal Ecology, 2020, 41(9): 53-58. (in Chinese with English abstract) | |
[150] | 张锦. 畜禽粪便中抗生素及抗性基因的消减研究[D]. 杭州: 浙江农林大学, 2018. |
ZHANG J. Elimination of antibiotics and resistance genes in livestock manure[D]. Hangzhou: Zhejiang A & F University, 2018. (in Chinese with English abstract) | |
[151] | 仇天雷, 高敏, 韩梅琳, 等. 鸡粪堆肥过程中四环素类抗生素及抗性细菌的消减研究[J]. 农业环境科学学报, 2015, 34(4): 795-800. |
QIU T L, GAO M, HAN M L, et al. Decreases of tetracyclines and antibiotics-resistant bacteria during composting of chicken manure[J]. Journal of Agro-Environment Science, 2015, 34(4): 795-800. (in Chinese with English abstract) | |
[152] | FRAQUEZA M J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages[J]. International Journal of Food Microbiology, 2015, 212: 76-88. |
[153] | XU Y G, YU W T, MA Q, et al. Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years[J]. Science of the Total Environment, 2015, 530/531: 191-197. |
[154] | 杨振边. 强力霉素降解菌在蛋鸡粪堆肥中的应用效果[D]. 广州: 华南农业大学, 2016. |
YANG Z B. The applied effects of doxycycline-degrading-bacteria on the composting of laying-hens manure[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract) |
[1] | 倪治华, 孙万春, 林辉, 钟杭, 朱伟锋, 陆若辉, 马军伟. 浙江省畜禽粪源有机肥质量安全风险与控制对策[J]. 浙江农业学报, 2020, 32(2): 299-307. |
[2] | 付珍珍, 曾月, 李增威, 何利, 周康, 刘书亮, 邹立扣, 敖晓琳, 陈姝娟. 分子印迹固相萃取-高效液相色谱法测定牛奶中四环素类抗生素残留[J]. 浙江农业学报, 2018, 30(2): 314-322. |
[3] | 倪中应, 石一珺, 谢国雄, 章明奎. 杭州市典型设施栽培土壤环境质量调查[J]. 浙江农业学报, 2017, 29(12): 2091-2096. |
[4] | 徐秋桐1,顾国平2,章明奎1,*. 有机肥对土壤中抗生素降解的促进作用 [J]. 浙江农业学报, 2015, 27(3): 417-. |
[5] | 胡秀荣,黄振东,蒲占湑,杜丹超,陈国庆,鹿连明*. 柑橘内生放线菌CR20发酵培养基的优化[J]. 浙江农业学报, 2015, 27(2): 215-. |
[6] | 刘益曦1,胡春1,叶定池2,朱圣潮1,*. 基于GIS的珊溪库区畜禽废弃物污染风险评价与防治对策 [J]. 浙江农业学报, 2014, 26(6): 1602-. |
[7] | 郭冬生1,王文龙1,*,彭小兰2,龚群辉2. 湖南省畜禽粪便抗生素排放量估算与治理策略[J]. 浙江农业学报, 2014, 26(5): 1315-. |
[8] | 章明奎;徐秋桐. 农田系统中兽用抗生素的污染及其行为研究进展[J]. , 2013, 25(2): 0-424. |
[9] | 吴俐勤;钱鸣蓉;卢立志;陶争荣;李国勤;冯尚连;陈志民;李锐;方丽珍. 浙江省主要畜禽产区养殖废水中抗生素残留研究[J]. , 2012, 24(4): 0-705. |
[10] | 王阳;章明奎;*. 畜禽粪对抗生素的吸持作用[J]. , 2011, 23(2): 0-377. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 554
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||