浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 538-547.DOI: 10.3969/j.issn.1004-1524.20240269
谢昶琰1(), 金雨濛2, 张苗1, 董青君1, 李青1, 纪力1, 钟平1, 陈川1, 章安康1,*(
)
收稿日期:
2024-03-22
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
谢昶琰(1990—),女,河南开封人,硕士,助理研究员,主要从事农业资源化利用和作物养分管理方面的研究。E-mail:1139908946@qq.com
通讯作者:
* 章安康,E-mail:13905239366@139.com
基金资助:
XIE Changyan1(), JIN Yumeng2, ZHANG Miao1, DONG Qingjun1, LI Qing1, JI Li1, ZHONG Ping1, CHEN Chuan1, ZHANG Ankang1,*(
)
Received:
2024-03-22
Online:
2025-03-25
Published:
2025-04-02
摘要:
为实现河道清淤工程淤泥的资源化利用,以试验所在地的清淤淤泥和当地有机物料按照不同体积比例(T1,8∶2;T2,7∶3;T3,6∶4;T4,5∶5;T5,4∶6;T6,3∶7)制作水稻育秧营养土,以水稻品种南粳9108为试验材料,开展两季的田间育秧试验,研究配制的育秧营养土的理化性状、重金属含量与潜在生态风险,及其对水稻秧苗综合素质的影响,探究该营养土在水稻机插秧苗生产上的应用效果。结果表明,将淤泥与有机物料混配制作育秧营养土能有效降低淤泥的容重,提高总孔隙度和有机质、全氮含量。配制的6种育秧营养土中,镉、铬、铅、砷、汞元素的总量均未超过相关标准限量,污染等级为安全,潜在生态风险评价为轻微风险。配制的各营养土相比,T2处理下秧苗的综合素质最优,两季试验的株高均显著(P<0.05)高于纯稻田土,增幅在25.80%~57.49%,其根干重、总根长、根系表面积、根体积、壮苗指数和生长函数也均显著高于纯稻田土,符合机插壮秧标准和作业质量要求,表现出良好的适机性。综上,利用河道清淤淤泥开发机插秧苗营养土具有较强的可行性,在适宜的添加比例下,其育秧效果甚至优于稻田土。
中图分类号:
谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547.
XIE Changyan, JIN Yumeng, ZHANG Miao, DONG Qingjun, LI Qing, JI Li, ZHONG Ping, CHEN Chuan, ZHANG Ankang. Application effect of nutrient soil made from river sludge for machine-transplanted rice seedling[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 538-547.
处理 Treatment | 容重 Bulk density/ (g·cm-3) | 总孔隙度 Total porosity/% | pH | 电导率 Electrical conductivity/ (mS·cm-1) | 有机质含量 Organic matter content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) |
---|---|---|---|---|---|---|
CK1 | 1.03±0.01 b | 53.8±1.6 ab | 8.16±0.07 a | 0.06±0.01 d | 28.59±1.15 e | 1.85±0.63 d |
CK2 | 1.15±0.07 a | 49.4±1.7 b | 8.05±0.02 a | 0.31±0.04 d | 27.14±2.03 e | 1.81±0.26 d |
T1 | 1.07±0.02 ab | 51.4±2.3 ab | 8.07±0.03 a | 1.12±0.13 c | 40.92±10.35 de | 3.57±1.64 c |
T2 | 1.03±0.01 b | 51.8±1.6 ab | 7.90±0.05 b | 1.20±0.04 c | 53.84±6.24 cd | 4.18±0.67 b |
T3 | 0.91±0.06 c | 53.1±0.8 ab | 7.94±0.08 b | 1.35±0.17 c | 75.76±6.03 bc | 5.29±0.36 b |
T4 | 0.86±0.03 c | 53.3±6.0 ab | 7.75±0.03 cd | 1.68±0.15 b | 86.39±9.27 b | 6.06±0.24 b |
T5 | 0.63±0.04 d | 55.6±1.9 ab | 7.79±0.01 c | 1.90±0.03 b | 98.64±14.53 b | 8.49±1.68 a |
T6 | 0.68±0.02 d | 56.8±1.0 a | 7.66±0.03 d | 2.52±0.04 a | 138.40±24.49 a | 9.13±1.84 a |
表1 不同处理营养土的理化性状
Table 1 Physiochemical properties of nutrient soil under treatments
处理 Treatment | 容重 Bulk density/ (g·cm-3) | 总孔隙度 Total porosity/% | pH | 电导率 Electrical conductivity/ (mS·cm-1) | 有机质含量 Organic matter content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) |
---|---|---|---|---|---|---|
CK1 | 1.03±0.01 b | 53.8±1.6 ab | 8.16±0.07 a | 0.06±0.01 d | 28.59±1.15 e | 1.85±0.63 d |
CK2 | 1.15±0.07 a | 49.4±1.7 b | 8.05±0.02 a | 0.31±0.04 d | 27.14±2.03 e | 1.81±0.26 d |
T1 | 1.07±0.02 ab | 51.4±2.3 ab | 8.07±0.03 a | 1.12±0.13 c | 40.92±10.35 de | 3.57±1.64 c |
T2 | 1.03±0.01 b | 51.8±1.6 ab | 7.90±0.05 b | 1.20±0.04 c | 53.84±6.24 cd | 4.18±0.67 b |
T3 | 0.91±0.06 c | 53.1±0.8 ab | 7.94±0.08 b | 1.35±0.17 c | 75.76±6.03 bc | 5.29±0.36 b |
T4 | 0.86±0.03 c | 53.3±6.0 ab | 7.75±0.03 cd | 1.68±0.15 b | 86.39±9.27 b | 6.06±0.24 b |
T5 | 0.63±0.04 d | 55.6±1.9 ab | 7.79±0.01 c | 1.90±0.03 b | 98.64±14.53 b | 8.49±1.68 a |
T6 | 0.68±0.02 d | 56.8±1.0 a | 7.66±0.03 d | 2.52±0.04 a | 138.40±24.49 a | 9.13±1.84 a |
处理 Treatment | Cd含量 Cd content | Cr含量 Cr content | As含量 As content | Hg含量 Hg content | Pb含量 Pb content |
---|---|---|---|---|---|
CK1 | 0.33±0.02 bc | 18.59±8.18 d | 17.74±1.44 a | 0.01±0.01 a | 23.37±2.21 a |
CK2 | 0.39±0.01 ab | 216.58±140.01 a | 17.23±2.32 a | 0.02±0.01 a | 22.31±0.44 a |
T1 | 0.22±0.04 d | 163.94±23.52 ab | 10.96±2.08 b | 0.02±0.01 a | 14.82±1.82 b |
T2 | 0.26±0.08 cd | 110.33±13.72 b | 15.63±2.11 ab | 0.01±0.01 a | 14.79±1.10 b |
T3 | 0.32±0.02 bc | 95.85±6.99 c | 17.07±4.89 a | 0.02±0.01 a | 16.12±3.71 b |
T4 | 0.32±0.01 bc | 126.66±8.61 ab | 18.29±2.35 a | 0.01±0.01 a | 13.65±2.34 b |
T5 | 0.38±0.01 ab | 210.33±42.75 a | 13.69±0.42 ab | 0.02±0.01 a | 15.03±2.01 b |
T6 | 0.42±0.06 a | 102.06±9.51 b | 14.35±1.17 ab | 0.01±0.01 a | 12.69±1.38 b |
表2 不同处理营养土的重金属含量
Table 2 Contents of heavy metals in nutrient soil under treatments mg·kg-1
处理 Treatment | Cd含量 Cd content | Cr含量 Cr content | As含量 As content | Hg含量 Hg content | Pb含量 Pb content |
---|---|---|---|---|---|
CK1 | 0.33±0.02 bc | 18.59±8.18 d | 17.74±1.44 a | 0.01±0.01 a | 23.37±2.21 a |
CK2 | 0.39±0.01 ab | 216.58±140.01 a | 17.23±2.32 a | 0.02±0.01 a | 22.31±0.44 a |
T1 | 0.22±0.04 d | 163.94±23.52 ab | 10.96±2.08 b | 0.02±0.01 a | 14.82±1.82 b |
T2 | 0.26±0.08 cd | 110.33±13.72 b | 15.63±2.11 ab | 0.01±0.01 a | 14.79±1.10 b |
T3 | 0.32±0.02 bc | 95.85±6.99 c | 17.07±4.89 a | 0.02±0.01 a | 16.12±3.71 b |
T4 | 0.32±0.01 bc | 126.66±8.61 ab | 18.29±2.35 a | 0.01±0.01 a | 13.65±2.34 b |
T5 | 0.38±0.01 ab | 210.33±42.75 a | 13.69±0.42 ab | 0.02±0.01 a | 15.03±2.01 b |
T6 | 0.42±0.06 a | 102.06±9.51 b | 14.35±1.17 ab | 0.01±0.01 a | 12.69±1.38 b |
处理 Treatment | PCd | PCr | PAs | PHg | PPb | PN | ECd | ECr | EAs | EHg | EPb | RI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK1 | 0.41 | 0.05 | 0.89 | 0.01 | 0.10 | 0.66 | 12.3 | 0.1 | 8.9 | 0.4 | 0.5 | 22.2 |
CK2 | 0.49 | 0.62 | 0.86 | 0.02 | 0.09 | 0.68 | 14.7 | 1.2 | 8.6 | 0.8 | 0.4 | 25.7 |
T1 | 0.28 | 0.47 | 0.55 | 0.02 | 0.06 | 0.44 | 8.4 | 0.9 | 5.5 | 0.8 | 0.3 | 15.9 |
T2 | 0.33 | 0.32 | 0.78 | 0.01 | 0.06 | 0.59 | 9.9 | 0.6 | 7.8 | 0.4 | 0.3 | 19.0 |
T3 | 0.40 | 0.27 | 0.85 | 0.02 | 0.07 | 0.64 | 12.0 | 0.5 | 8.5 | 0.8 | 0.3 | 22.1 |
T4 | 0.40 | 0.36 | 0.91 | 0.01 | 0.06 | 0.69 | 12.0 | 0.7 | 9.1 | 0.4 | 0.3 | 22.5 |
T5 | 0.48 | 0.60 | 0.68 | 0.02 | 0.06 | 0.55 | 14.4 | 1.2 | 6.8 | 0.8 | 0.3 | 23.5 |
T6 | 0.53 | 0.29 | 0.72 | 0.01 | 0.05 | 0.56 | 15.9 | 0.6 | 7.2 | 0.4 | 0.2 | 24.3 |
表3 不同处理营养土的重金属污染评价与潜在生态风险评价
Table 3 Evaluation of heavy metal pollution and potential ecological risk of nutrient soil under treatments
处理 Treatment | PCd | PCr | PAs | PHg | PPb | PN | ECd | ECr | EAs | EHg | EPb | RI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK1 | 0.41 | 0.05 | 0.89 | 0.01 | 0.10 | 0.66 | 12.3 | 0.1 | 8.9 | 0.4 | 0.5 | 22.2 |
CK2 | 0.49 | 0.62 | 0.86 | 0.02 | 0.09 | 0.68 | 14.7 | 1.2 | 8.6 | 0.8 | 0.4 | 25.7 |
T1 | 0.28 | 0.47 | 0.55 | 0.02 | 0.06 | 0.44 | 8.4 | 0.9 | 5.5 | 0.8 | 0.3 | 15.9 |
T2 | 0.33 | 0.32 | 0.78 | 0.01 | 0.06 | 0.59 | 9.9 | 0.6 | 7.8 | 0.4 | 0.3 | 19.0 |
T3 | 0.40 | 0.27 | 0.85 | 0.02 | 0.07 | 0.64 | 12.0 | 0.5 | 8.5 | 0.8 | 0.3 | 22.1 |
T4 | 0.40 | 0.36 | 0.91 | 0.01 | 0.06 | 0.69 | 12.0 | 0.7 | 9.1 | 0.4 | 0.3 | 22.5 |
T5 | 0.48 | 0.60 | 0.68 | 0.02 | 0.06 | 0.55 | 14.4 | 1.2 | 6.8 | 0.8 | 0.3 | 23.5 |
T6 | 0.53 | 0.29 | 0.72 | 0.01 | 0.05 | 0.56 | 15.9 | 0.6 | 7.2 | 0.4 | 0.2 | 24.3 |
处理 Treatment | 成苗率 Seeding rate/% | 叶龄 Leaf age | 株高 Height/cm | 茎粗 Stem diameter/mm | SPAD值 SPAD value | 地上部干重 Dry weight of shoot/g | 根干重 Dry weight of root/g |
---|---|---|---|---|---|---|---|
CK1 | 88.61±9.29 a | 3.94±0.23 c | 11.32±0.74 d | 1.35±0.22 c | 21.36±2.33 abc | 1.31±0.15 b | 1.94±0.07 c |
CK2 | 78.10±6.46 a | 3.70±0.48 d | 10.07±1.10 e | 2.01±0.39 b | 18.92±2.95 c | 0.95±0.13 d | 1.07±0.15 d |
T1 | 80.31±10.09 a | 4.67±0.19 a | 15.52±1.99 a | 2.29±0.47 ab | 24.74±1.12 a | 1.75±0.18 a | 2.06±0.31 b |
T2 | 90.28±9.58 a | 4.46±0.49 ab | 14.24±1.08 b | 2.32±0.37 ab | 20.90±2.84 bc | 1.53±0.18 ab | 2.68±0.28 a |
T3 | 89.17±3.77 a | 4.27±0.32 bc | 11.66±1.07 d | 2.39±0.34 ab | 22.92±2.85 ab | 1.39±0.18 b | 2.52±0.25 a |
T4 | 82.53± 5.08 a | 4.70±0.39 a | 11.75±0.74 d | 2.42±0.25 ab | 22.04±2.12 abc | 1.26±0.19 c | 2.00±0.13 b |
T5 | 93.60±15.09 a | 4.24±0.63 bc | 13.05±0.44 c | 2.41±0.25 ab | 23.56±2.56 ab | 1.62±0.17 a | 2.31±0.21 ab |
T6 | 79.77±7.45 a | 4.49±0.36 ab | 12.94±1.15 c | 2.55±0.12 a | 23.24±2.16 ab | 1.29±0.21 c | 2.25±0.32 ab |
表4 不同处理对第一季水稻秧苗生长的影响
Table 4 Effects of treatments on growth of rice seedlings in the first season
处理 Treatment | 成苗率 Seeding rate/% | 叶龄 Leaf age | 株高 Height/cm | 茎粗 Stem diameter/mm | SPAD值 SPAD value | 地上部干重 Dry weight of shoot/g | 根干重 Dry weight of root/g |
---|---|---|---|---|---|---|---|
CK1 | 88.61±9.29 a | 3.94±0.23 c | 11.32±0.74 d | 1.35±0.22 c | 21.36±2.33 abc | 1.31±0.15 b | 1.94±0.07 c |
CK2 | 78.10±6.46 a | 3.70±0.48 d | 10.07±1.10 e | 2.01±0.39 b | 18.92±2.95 c | 0.95±0.13 d | 1.07±0.15 d |
T1 | 80.31±10.09 a | 4.67±0.19 a | 15.52±1.99 a | 2.29±0.47 ab | 24.74±1.12 a | 1.75±0.18 a | 2.06±0.31 b |
T2 | 90.28±9.58 a | 4.46±0.49 ab | 14.24±1.08 b | 2.32±0.37 ab | 20.90±2.84 bc | 1.53±0.18 ab | 2.68±0.28 a |
T3 | 89.17±3.77 a | 4.27±0.32 bc | 11.66±1.07 d | 2.39±0.34 ab | 22.92±2.85 ab | 1.39±0.18 b | 2.52±0.25 a |
T4 | 82.53± 5.08 a | 4.70±0.39 a | 11.75±0.74 d | 2.42±0.25 ab | 22.04±2.12 abc | 1.26±0.19 c | 2.00±0.13 b |
T5 | 93.60±15.09 a | 4.24±0.63 bc | 13.05±0.44 c | 2.41±0.25 ab | 23.56±2.56 ab | 1.62±0.17 a | 2.31±0.21 ab |
T6 | 79.77±7.45 a | 4.49±0.36 ab | 12.94±1.15 c | 2.55±0.12 a | 23.24±2.16 ab | 1.29±0.21 c | 2.25±0.32 ab |
处理 Treatment | 成苗率 Seeding rate/% | 叶龄 Leaf age | 株高 Height/cm | 茎粗 Stem diameter/mm | SPAD值 SPAD value | 地上部干重 Dry weight of shoot/g | 根干重 Dry weight of root/g |
---|---|---|---|---|---|---|---|
CK1 | 81.41±9.03 a | 3.96±0.13 a | 12.82±0.73 d | 1.86±0.16 bc | 20.66±1.02 c | 1.20±0.11 d | 1.10±0.13 c |
CK2 | 84.74±11.11 a | 3.68±0.31 b | 14.01±1.19 c | 1.68±0.16 c | 22.64±3.72 bc | 1.13±0.15 d | 0.67±0.18 e |
T1 | 88.06±11.31 a | 4.07±0.13 a | 20.46±1.06 b | 2.10±0.11 a | 28.52±4.78 a | 1.60 ±0.16 c | 1.79±0.23 a |
T2 | 89.73±12.03 a | 4.00±0.04 a | 20.19±1.44 b | 2.07±0.26 ab | 23.26±1.76 bc | 1.67±0.26 c | 1.78±0.27 a |
T3 | 88.90±8.19 a | 4.07±0.19 a | 20.11±1.52 b | 1.78±0.24 bc | 23.10±1.85 bc | 1.81±0.17 b | 1.55±0.29 b |
T4 | 92.49±13.31 a | 4.00±0.06 a | 19.29±1.09 b | 1.67±0.11 c | 22.18±0.77 bc | 1.63±0.10 c | 0.69 ±0.14 e |
T5 | 92.38±14.55 a | 4.02±0.06 a | 21.74±1.74 a | 1.95±0.16 b | 25.26±1.15 ab | 2.03±0.16 a | 0.88±0.18 d |
T6 | 82.65±4.98 a | 4.02±0.08 a | 19.76±1.39 b | 2.01±0.22 ab | 27.90±4.31 a | 1.75±0.18 bc | 0.93±0.14 d |
表5 不同处理对第二季水稻秧苗生长的影响
Table 5 Effects of treatments on growth of rice seedlings in the second season
处理 Treatment | 成苗率 Seeding rate/% | 叶龄 Leaf age | 株高 Height/cm | 茎粗 Stem diameter/mm | SPAD值 SPAD value | 地上部干重 Dry weight of shoot/g | 根干重 Dry weight of root/g |
---|---|---|---|---|---|---|---|
CK1 | 81.41±9.03 a | 3.96±0.13 a | 12.82±0.73 d | 1.86±0.16 bc | 20.66±1.02 c | 1.20±0.11 d | 1.10±0.13 c |
CK2 | 84.74±11.11 a | 3.68±0.31 b | 14.01±1.19 c | 1.68±0.16 c | 22.64±3.72 bc | 1.13±0.15 d | 0.67±0.18 e |
T1 | 88.06±11.31 a | 4.07±0.13 a | 20.46±1.06 b | 2.10±0.11 a | 28.52±4.78 a | 1.60 ±0.16 c | 1.79±0.23 a |
T2 | 89.73±12.03 a | 4.00±0.04 a | 20.19±1.44 b | 2.07±0.26 ab | 23.26±1.76 bc | 1.67±0.26 c | 1.78±0.27 a |
T3 | 88.90±8.19 a | 4.07±0.19 a | 20.11±1.52 b | 1.78±0.24 bc | 23.10±1.85 bc | 1.81±0.17 b | 1.55±0.29 b |
T4 | 92.49±13.31 a | 4.00±0.06 a | 19.29±1.09 b | 1.67±0.11 c | 22.18±0.77 bc | 1.63±0.10 c | 0.69 ±0.14 e |
T5 | 92.38±14.55 a | 4.02±0.06 a | 21.74±1.74 a | 1.95±0.16 b | 25.26±1.15 ab | 2.03±0.16 a | 0.88±0.18 d |
T6 | 82.65±4.98 a | 4.02±0.08 a | 19.76±1.39 b | 2.01±0.22 ab | 27.90±4.31 a | 1.75±0.18 bc | 0.93±0.14 d |
处理 Treatment | 总根长 Total root length/cm | 根系表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Tips | 分叉数 Forks |
---|---|---|---|---|---|
CK1 | 67.37±9.98 bc | 6.39±1.01 b | 0.060±0.008 bc | 396±90 abc | 461±63 bc |
CK2 | 37.56±13.23 c | 3.07±1.27 d | 0.055±0.010 c | 163±99 d | 267±50 d |
T1 | 83.36±23.95 a | 9.30±1.63 a | 0.085±0.012 ab | 504±97 a | 534±133 a |
T2 | 75.81±9.08 ab | 8.80±0.93 ab | 0.082±0.010 ab | 441±36 a | 508±68 ab |
T3 | 85.46±36.26 a | 9.85±4.06 a | 0.092±0.004 a | 408±78 ab | 475±72 ab |
T4 | 46.84±6.65 c | 5.91±0.82 c | 0.060±0.010 bc | 254±37 cd | 314±35 c |
T5 | 28.30±13.55 c | 3.65±1.26 d | 0.038±0.010 c | 378±94 abc | 358±75 c |
T6 | 59.08±21.63 bc | 6.57±2.32 b | 0.058±0.012 c | 348±124 bcd | 357±143 c |
表6 不同处理对第一季水稻秧苗根系形态的影响
Table 6 Effects of treatments on root morphology of rice seedlings in the first season
处理 Treatment | 总根长 Total root length/cm | 根系表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Tips | 分叉数 Forks |
---|---|---|---|---|---|
CK1 | 67.37±9.98 bc | 6.39±1.01 b | 0.060±0.008 bc | 396±90 abc | 461±63 bc |
CK2 | 37.56±13.23 c | 3.07±1.27 d | 0.055±0.010 c | 163±99 d | 267±50 d |
T1 | 83.36±23.95 a | 9.30±1.63 a | 0.085±0.012 ab | 504±97 a | 534±133 a |
T2 | 75.81±9.08 ab | 8.80±0.93 ab | 0.082±0.010 ab | 441±36 a | 508±68 ab |
T3 | 85.46±36.26 a | 9.85±4.06 a | 0.092±0.004 a | 408±78 ab | 475±72 ab |
T4 | 46.84±6.65 c | 5.91±0.82 c | 0.060±0.010 bc | 254±37 cd | 314±35 c |
T5 | 28.30±13.55 c | 3.65±1.26 d | 0.038±0.010 c | 378±94 abc | 358±75 c |
T6 | 59.08±21.63 bc | 6.57±2.32 b | 0.058±0.012 c | 348±124 bcd | 357±143 c |
处理 Treatment | 总根长 Total root length/cm | 根系表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Tips | 分叉数 Forks |
---|---|---|---|---|---|
CK1 | 80.14±17.02 b | 8.12±2.38 ab | 0.065±0.013 bc | 469±75 bc | 497±82 c |
CK2 | 54.38±19.73 cd | 5.23±1.87 c | 0.040±0.010 d | 328±130 cd | 334±79 cd |
T1 | 104.24±17.64 a | 10.29±2.32 a | 0.093±0.010 a | 656±97 a | 865±85 a |
T2 | 105.31±14.29 a | 9.82±1.34 ab | 0.089±0.010 ab | 462±112 bc | 553±69 bc |
T3 | 105.15±6.73 a | 10.52±0.59 a | 0.085±0.018 ab | 550±111 ab | 662±110 b |
T4 | 58.36±14.39 c | 5.87±1.13 bc | 0.047±0.010 cd | 344±95 cd | 396±146 cd |
T5 | 57.64±9.29 c | 5.77±1.01 bc | 0.047±0.016 cd | 357±67 cd | 422±114 cd |
T6 | 33.21±4.32 d | 3.48±0.91 d | 0.033±0.010 d | 244±68 d | 260±58 d |
表7 不同处理对第二季水稻秧苗根系形态的影响
Table 7 Effects of treatments on root morphology of rice seedlings in the second season
处理 Treatment | 总根长 Total root length/cm | 根系表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Tips | 分叉数 Forks |
---|---|---|---|---|---|
CK1 | 80.14±17.02 b | 8.12±2.38 ab | 0.065±0.013 bc | 469±75 bc | 497±82 c |
CK2 | 54.38±19.73 cd | 5.23±1.87 c | 0.040±0.010 d | 328±130 cd | 334±79 cd |
T1 | 104.24±17.64 a | 10.29±2.32 a | 0.093±0.010 a | 656±97 a | 865±85 a |
T2 | 105.31±14.29 a | 9.82±1.34 ab | 0.089±0.010 ab | 462±112 bc | 553±69 bc |
T3 | 105.15±6.73 a | 10.52±0.59 a | 0.085±0.018 ab | 550±111 ab | 662±110 b |
T4 | 58.36±14.39 c | 5.87±1.13 bc | 0.047±0.010 cd | 344±95 cd | 396±146 cd |
T5 | 57.64±9.29 c | 5.77±1.01 bc | 0.047±0.016 cd | 357±67 cd | 422±114 cd |
T6 | 33.21±4.32 d | 3.48±0.91 d | 0.033±0.010 d | 244±68 d | 260±58 d |
图1 不同处理对水稻秧苗素质的影响 同一生长季柱上无相同字母的表示差异显著(P<0.05)。
Fig.1 Effect of treatments on quality of rice seedlings under treatments Bars marked without the same letters in the same growth season indicate significant difference at P<0.05.
[1] | 彭绅. 基于水利工程中的河道清淤整治施工分析[J]. 城市建设理论研究(电子版), 2023(31): 208-210. |
PENG S. Construction analysis of river dredging and regulation based on water conservancy project[J]. Theoretical Research in Urban Construction, 2023(31): 208-210. (in Chinese) | |
[2] | 冀浩, 陈垒. 河道淤泥清理技术在水利工程中的应用研究[J]. 工程技术研究, 2023, 8(12): 91-93. |
JI H, CHEN L. Research on the application of river channel silt cleaning technology in water conservancy engineering[J]. Engineering and Technological Research, 2023, 8(12): 91-93. (in Chinese with English abstract) | |
[3] | 谢昶琰, 董青君, 张苗, 等. 河道淤泥制作育苗基质对黄瓜幼苗生长的影响[J]. 天津农业科学, 2023, 29(10): 1-5. |
XIE C Y, DONG Q J, ZHANG M, et al. Effects of seedling substrate produced by river sludge on the growth of cucumber seedling[J]. Tianjin Agricultural Sciences, 2023, 29(10): 1-5. (in Chinese with English abstract) | |
[4] | 齐丽勇, 于海洋, 许金盾, 等. 城市清淤底泥原位资源化利用关键技术研究与应用[J]. 再生资源与循环经济, 2023, 16(3): 44-47. |
QI L Y, YU H Y, XU J D, et al. Research and application of key technologies for in situ resource utilization of urban dredging sediment[J]. Recyclable Resources and Circular Economy, 2023, 16(3): 44-47. (in Chinese with English abstract) | |
[5] | 黄英豪, 戴济群. 我国疏浚淤泥处置与利用研究进展[J]. 中国水利, 2024(3): 25-28. |
HUANG Y H, DAI J Q. Research progress on disposal and utilization of dredged sediment in China[J]. China Water Resources, 2024(3): 25-28. (in Chinese with English abstract) | |
[6] | 潘逸凡. 河道清淤底泥资源化利用研究进展[J]. 科技创新与应用, 2020(26): 59-61. |
PAN Y F. Research progress on resource utilization of river dredging sediment[J]. Technology Innovation and Application, 2020(26): 59-61. (in Chinese) | |
[7] | 庄杨, 陈春伟, 杨崧, 等. 淤泥资源化利用方向分析[J]. 江苏水利, 2021(5): 44-47. |
ZHUANG Y, CHEN C W, YANG S, et al. Analysis on resource utilization direction of silt[J]. Jiangsu Water Resources, 2021(5): 44-47. (in Chinese with English abstract) | |
[8] | 郭季羽. 利用北运河疏浚淤泥制备矿物复合肥及种植试验研究[D]. 北京: 中国地质大学(北京), 2021. |
GUO J Y. Utilization of dredging silt from the north canal river on preparing mineral compound fertilizer and planting experiment[D]. Beijing: China University of Geosciences, 2021. (in Chinese with English abstract) | |
[9] | 李宝磊, 刘舒, 曾乐, 等. 我国河道底泥资源化利用技术现状[J]. 科技创新与应用, 2020(2): 156-157. |
LI B L, LIU S, ZENG L, et al. Present situation of resource utilization technology of river sediment in China[J]. Technology Innovation and Application, 2020(2): 156-157. (in Chinese) | |
[10] | 陈瑞林. 淮安市淮安区水稻集中育秧应用现状及对策[J]. 现代农业科技, 2022(4): 51-53. |
CHEN R L. Application status and countermeasures of centralized rice seedling raising in Huai’an District of Huai’an City[J]. Modern Agricultural Science and Technology, 2022(4): 51-53. (in Chinese) | |
[11] | 肖洋, 石珏杰, 张畅通, 等. 淮安市水稻机插毯苗育秧存在的问题及对策研究[J]. 江苏农机化, 2023(6): 21-24. |
XIAO Y, SHI J J, ZHANG C T, et al. Study on the problems and countermeasures of rice seedling raising with machine transplanted blanket in Huai’an City[J]. Jiangsu Agricultural Mechanization, 2023(6): 21-24. (in Chinese) | |
[12] | 舒小伟, 徐杰姣, 徐萱, 等. 机插秧育苗配套措施对水稻秧苗素质、产量及氮素吸收利用的影响[J]. 江苏农业科学, 2023, 51(16): 82-90. |
SHU X W, XU J J, XU X, et al. Influences of supporting measures for mechanical transplanting on seedling quality, yield and nitrogen absorption and utilization of rice[J]. Jiangsu Agricultural Sciences, 2023, 51(16): 82-90. (in Chinese with English abstract) | |
[27] | DONG X J, SUN H W, ZHANG Q, et al. Comprehensive benefit evaluation and market application prospect analysis of rice straw seedling substrate[J]. Rural Economy and Science-Technology, 2023, 34(21): 5-9. (in Chinese) |
[13] | 林阿典, 徐强辉, 杨锦标, 等. 泥炭、蛭石与稻田土混配基质对机插秧苗素质及栽插质量的影响[J]. 中国稻米, 2022, 28(4): 90-94. |
LIN A D, XU Q H, YANG J B, et al. Effects of mixed matrix of peat, vermiculite and paddy soil on the quality of machine-transplanted seedlings and transplanting quality[J]. China Rice, 2022, 28(4): 90-94. (in Chinese with English abstract) | |
[14] | 张均华, 黄晶, 徐青山, 等. 水稻无土育秧基质研究进展[J]. 中国稻米, 2020, 26(5): 40-44. |
ZHANG J H, HUANG J, XU Q S, et al. Research progress of soilless substrate for rice seedling raising[J]. China Rice, 2020, 26(5): 40-44. (in Chinese with English abstract) | |
[15] | 罗成科, 张佳瑜, 肖国举, 等. 宁东基地不同燃煤电厂周边土壤5种重金属元素污染特征及生态风险[J]. 生态环境学报, 2018, 27(7): 1285-1291. |
LUO C K, ZHANG J Y, XIAO G J, et al. Pollution characteristics and ecological assessment of heavy metals in soil around different coal-fired power plants of ningdong base[J]. Ecology and Environmental Sciences, 2018, 27(7): 1285-1291. (in Chinese with English abstract) | |
[16] | FAN Z Y, WANG W C, TANG C Y, et al. Targeting remediation dredging by ecological risk assessment of heavy metals in lake sediment: a case study of Shitang Lake, China[J]. Sustainability, 2019, 11(24): 7251. |
[17] | 杨冬艳, 王丹, 桑婷, 等. 番茄秸秆堆肥添加量对番茄幼苗生长及根系形态的影响[J]. 江西农业大学学报, 2024, 46(1): 60-67. |
YANG D Y, WANG D, SANG T, et al. Effects of amount of tomato straw compost addition on seedling growth and root morphology[J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(1): 60-67. (in Chinese with English abstract) | |
[18] | 刘银, 浩婷, 张旭, 等. 改良疏浚淤泥土对蓖麻生长的影响初探[J]. 南水北调与水利科技, 2013, 11(5): 177-180. |
LIU Y, HAO T, ZHANG X, et al. Preliminary study of effects of improved dredged sludge soil on castor growth[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(5): 177-180. (in Chinese with English abstract) | |
[19] | 谢昶琰, 李青, 陈川, 等. 清淤河泥和草木灰渣作基质对水稻育秧效果的影响[J]. 浙江农业科学, 2024, 65(4): 834-838. |
XIE C Y, LI Q, CHEN C, et al. Effect of dredging river mud and plant ash residue as substrate on rice seedling quality[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(4): 834-838. (in Chinese with English abstract) | |
[20] | 刘学方, 高强, 赵海涛. 菇渣替代泥炭配制水稻育苗基质育秧效果研究[J]. 现代农业科技, 2022(19): 18-22. |
LIU X F, GAO Q, ZHAO H T. Effect of using mushroom residue instead of peat to prepare rice seedling substrate[J]. Modern Agricultural Science and Technology, 2022(19): 18-22. (in Chinese with English abstract) | |
[21] | 王运琦, 张燕, 刘建宁, 等. 地毯式草皮无土栽培基质的筛选试验[J]. 中国农学通报, 2005, 21(10): 269-270, 310. |
WANG Y Q, ZHANG Y, LIU J N, et al. The selecting experiment of different soilless culture medium of carpet sod[J]. Chinese Agricultural Science Bulletin, 2005, 21(10): 269-270, 310. (in Chinese with English abstract) | |
[22] | 孙春梅, 董玉兵, 纪力, 等. 生物质发电厂草木灰农业利用技术[J]. 大麦与谷类科学, 2022, 39(6): 60-66, 70. |
SUN C M, DONG Y B, JI L, et al. Technology of agricultural utilization of plant ash, the waste of biomass power plants[J]. Barley and Cereal Sciences, 2022, 39(6): 60-66, 70. (in Chinese with English abstract) | |
[23] | 陈剑, 齐文, 蒋海凌, 等. 西兰花废弃物堆肥对水稻秧苗素质及产量的影响[J]. 作物杂志, 2023(4): 136-143. |
CHEN J, QI W, JIANG H L, et al. Effects of broccoli waste composting on seedling quality and yield of rice[J]. Crops, 2023(4): 136-143. (in Chinese with English abstract) | |
[24] | 杜友, 卢灿炯, 张园, 等. 不同育秧方式对水稻秧苗素质、栽插质量和产量的影响[J]. 中国稻米, 2019, 25(2): 91-93. |
DU Y, LU C J, ZHANG Y, et al. Effects of different seedling raising methods on seedling quality, transplanting performance and yield of rice[J]. China Rice, 2019, 25(2): 91-93. (in Chinese with English abstract) | |
[25] | 邢志鹏, 吴培, 朱明, 等. 机械化种植方式对不同品种水稻株型及抗倒伏能力的影响[J]. 农业工程学报, 2017, 33(1): 52-62. |
XING Z P, WU P, ZHU M, et al. Effect of mechanized planting methods on plant type and lodging resistance of different rice varieties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 52-62. (in Chinese with English abstract) | |
[26] | 吴文革, 周永进, 陈刚, 等. 不同育秧基质和水分管理对机插稻秧苗素质与产量的影响[J]. 中国生态农业学报, 2014, 22(9): 1057-1063. |
WU W G, ZHOU Y J, CHEN G, et al. Effects of different seedling nursery substrates and water management modes on seedling quality and yield of mechanically transplanted rice[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1057-1063. (in Chinese with English abstract) | |
[27] | 董小菁, 孙洪武, 张倩, 等. 水稻秸秆育秧基质综合效益评价及市场应用前景分析[J]. 农村经济与科技, 2023, 34(21): 5-9. |
[1] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
[2] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
[3] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
[4] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
[5] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
[6] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
[7] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
[8] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[9] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[10] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
[11] | 汪颖, 王尖, 冯子珊, 汪宝根, 吴新义, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴晓花. 瓠瓜果实品质性状因子分析和综合评价[J]. 浙江农业学报, 2024, 36(2): 334-343. |
[12] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[13] | 谭宇虹, 周敏, 张华, 张恒, 王伏林, 宋涛, 朱英, 徐恒. 灌浆期高温对稻米品质影响的品种类型间差异[J]. 浙江农业学报, 2024, 36(12): 2657-2665. |
[14] | 徐金勤, 邱新法, 朱平, 肖潇. 1960—2019年中国水稻气候生长期水热资源变化趋势及其归因分析[J]. 浙江农业学报, 2024, 36(11): 2575-2583. |
[15] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||