浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2247-2256.DOI: 10.3969/j.issn.1004-1524.20231318
张余1,2,3(), 金明伟4, 任丽1,2, 章毅颖1,2, 赵洪1,2, 刘昆1,2, 邓姗1,2, 褚云霞1,2,3, 李寿国1,2, 张靖立1,2, 黄静艳1,2, 陈海荣1,2,3,*(
)
收稿日期:
2023-11-21
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
张余(1988—),男,陕西周至人,博士,助理研究员,研究方向为辣椒抗逆相关基因的克隆与功能分析。E-mail:xinongxiaoyu@163.com
通讯作者:
*陈海荣,E-mail:sh57460009@163.com
基金资助:
ZHANG Yu1,2,3(), JIN Mingwei4, REN Li1,2, ZHANG Yiying1,2, ZHAO Hong1,2, LIU Kun1,2, DENG Shan1,2, CHU Yunxia1,2,3, LI Shouguo1,2, ZHANG Jingli1,2, HUANG Jingyan1,2, CHEN Hairong1,2,3,*(
)
Received:
2023-11-21
Online:
2024-10-25
Published:
2024-10-30
摘要:
AP2/ERF转录因子家族广泛参与植物生长发育以及逆境应答等生物学过程,对于AP2/ERF转录因子的研究有助于提高作物抗逆性。该研究以辣椒耐盐品种SHA2022119为材料,克隆得到CaERF70,该基因cDNA全长为819 bp,编码272个氨基酸,分子量约为30.59 ku,等电点pI为7.67。生物信息学分析表明,该蛋白带负电荷,属于不稳定蛋白,存在34个潜在发生磷酸化修饰的位点,为非跨膜蛋白且在细胞核中表达。系统发育树结果显示,辣椒CaERF70与番茄、烟草、马铃薯的ERF聚为一类,暗示着CaERF70在茄科进化过程中非常保守。定量PCR结果显示,CaERF70基因受低温诱导、高温抑制表达。原核表达实验表明,CaERF70编码蛋白大小约为30 ku,与预测大小一致。转录激活活性分析表明,CaERF70具有转录激活活性。综合以上结果表明,CaERF70为AP2/ERF2转录因子,属于ERF亚组第Ⅶ亚组成员,具有转录激活活性,高温或者低温胁迫导致CaERF70表达发生显著变化,暗示着CaERF70可能在辣椒应对高温或低温胁迫过程中发挥作用。
中图分类号:
张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256.
ZHANG Yu, JIN Mingwei, REN Li, ZHANG Yiying, ZHAO Hong, LIU Kun, DENG Shan, CHU Yunxia, LI Shouguo, ZHANG Jingli, HUANG Jingyan, CHEN Hairong. Expression patterns and transcriptional autoactivation analysis of CaERF70 in chili pepper[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2247-2256.
用途Usage | 引物名称Primer name | 引物序列Primer sequence |
---|---|---|
基因克隆Gene clone | CaERF70F | ATGGGTTCCCCACAAGAGAATTGCTC |
CaERF70R | TTATATCATGACAAGCTGAGAAT | |
表达量分析Expression analysis | RT-CaERF70F | GCCCCGAAAATACCCTTTATTC |
RT-CaERF70R | CGTTCGTTGAAACTCCTCTTTT | |
RT-ActinF | AGGGATGGGTCAAAAGGATGC | |
RT-ActinR | GAGACAACACCGCCTGAATAGC | |
原核表达Prokaryotic expression | GST-CaERF70F | TTCCAGGGGCCCCTGGGATCCATGGGTTCCCCACAAGAGAATTGCTC |
GST-CaERF70R | CTCGAGTCGACCCGGGAATTCTTATATCATGACAAGCTGAGAAT | |
自激活分析Self-activation analysis | BD-CaERF70F | ATGGCCATGGAGGCCGAATTCATGGGTTCCCCACAAGAGAATTGCTC |
BD-CaERF70R | CCGCTGCAGGTCGACGGATCCTTATATCATGACAAGCTGAGAAT |
表1 引物列表
Table 1 Primers list
用途Usage | 引物名称Primer name | 引物序列Primer sequence |
---|---|---|
基因克隆Gene clone | CaERF70F | ATGGGTTCCCCACAAGAGAATTGCTC |
CaERF70R | TTATATCATGACAAGCTGAGAAT | |
表达量分析Expression analysis | RT-CaERF70F | GCCCCGAAAATACCCTTTATTC |
RT-CaERF70R | CGTTCGTTGAAACTCCTCTTTT | |
RT-ActinF | AGGGATGGGTCAAAAGGATGC | |
RT-ActinR | GAGACAACACCGCCTGAATAGC | |
原核表达Prokaryotic expression | GST-CaERF70F | TTCCAGGGGCCCCTGGGATCCATGGGTTCCCCACAAGAGAATTGCTC |
GST-CaERF70R | CTCGAGTCGACCCGGGAATTCTTATATCATGACAAGCTGAGAAT | |
自激活分析Self-activation analysis | BD-CaERF70F | ATGGCCATGGAGGCCGAATTCATGGGTTCCCCACAAGAGAATTGCTC |
BD-CaERF70R | CCGCTGCAGGTCGACGGATCCTTATATCATGACAAGCTGAGAAT |
图3 核苷酸和氨基酸对比图 黑色下划线为预测NLS核定位信号,红色氨基酸为AP2保守结构域,绿色矩形为AP2结构域内第14和19位氨基酸。
Fig.3 Comparison of nucleotides and amino acids The black underline represents the predicted NLS nuclear localization signal, the red amino acid represents the conserved AP2 domain, and the green rectangle represents the 14th and 19th amino acids within the AP2 domain.
位置权重Location weight | LocDB | PotLocDB | Neural Nets | Pentamers | Integral |
---|---|---|---|---|---|
细胞核Nucleus | 10.0 | 3.0 | 0 | 0.19 | 8.98 |
质膜Plasma membrane | 0 | 0 | 0.96 | 0 | 0.68 |
细胞外Extracellular | 0 | 0 | 0.96 | 0.19 | 0 |
细胞质Cytoplasm | 0 | 0 | 0 | 2.42 | 0 |
线粒体Mitochondrion | 0 | 0 | 0 | 1.88 | 0 |
内质网Endoplasmic reticulum | 0 | 0 | 0 | 0.36 | 0 |
过氧化物酶体Peroxisome | 0 | 0 | 0.96 | 0 | 0.06 |
高尔基体Golgi body | 0 | 0 | 0.11 | 0.34 | 0 |
叶绿体Chloroplast | 0 | 0 | 0 | 0.06 | 0.02 |
液泡Vacuole | 0 | 0 | 0 | 0 | 0.26 |
表2 CaERF70蛋白亚细胞定位预测
Table 2 Prediction of CaERF70 subcellular localization
位置权重Location weight | LocDB | PotLocDB | Neural Nets | Pentamers | Integral |
---|---|---|---|---|---|
细胞核Nucleus | 10.0 | 3.0 | 0 | 0.19 | 8.98 |
质膜Plasma membrane | 0 | 0 | 0.96 | 0 | 0.68 |
细胞外Extracellular | 0 | 0 | 0.96 | 0.19 | 0 |
细胞质Cytoplasm | 0 | 0 | 0 | 2.42 | 0 |
线粒体Mitochondrion | 0 | 0 | 0 | 1.88 | 0 |
内质网Endoplasmic reticulum | 0 | 0 | 0 | 0.36 | 0 |
过氧化物酶体Peroxisome | 0 | 0 | 0.96 | 0 | 0.06 |
高尔基体Golgi body | 0 | 0 | 0.11 | 0.34 | 0 |
叶绿体Chloroplast | 0 | 0 | 0 | 0.06 | 0.02 |
液泡Vacuole | 0 | 0 | 0 | 0 | 0.26 |
图6 CaERF70进化树分析 甜橙(Citrus sinensis),XP_006490016.2;棉花(Gossypium hirsutum),XP_016737467.1;拟南芥(Arabidopsis thaliana),AAM64362.1;花生(Arachis hypogaea),XP_025632953.1;大豆(Glycine max),XP_003524068.1;苹果(Malus domestica),XP_008369419.2;黄瓜(Cucumis sativus),XP_004143677.2;葡萄(Vitis vinifera),XP_002281954.1;猕猴桃(Actinidia chinensis),PSR93298.1;烟草(Nicotiana tabacum),NP_001312428.1;番茄(Solanum lycopersicum),XP_004235185.1;辣椒(Capsicum annuum),NP_001311615.2;马铃薯(Solanum tuberosum),XP_006358219.1;小麦(Triticum aestivum),XP_044328607.1;水稻(Oryza sativa),XP_015614870.1。
Fig.6 Phylogenetic tree of CaERF70 proteins
图7 辣椒CaERF70 与茄科植物烟草, 番茄和马铃薯同源蛋白的多序列比对 烟草(Nicotiana tabacum),NP_001312428.1;番茄(Solanum lycopersicum),XP_004235185.1;辣椒(Capsicum annuum),NP_001311615.2;马铃薯(Solanum tuberosum),XP_006358219.1。蓝色方框代表AP2/ERF DNA结合结构域。
Fig.7 Multi-sequence alignment of CaERF70 with homologous proteins of tobacco, tomato and potato The blue box represents the AP2/ERF DNA binding domain.
[1] | XIE Z L, NOLAN T M, JIANG H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 228. |
[2] | 兰孟焦, 后猛, 肖满秋, 等. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展[J]. 植物遗传资源学报, 2023, 24(5): 1223-1235. |
LAN M J, HOU M, XIAO M Q, et al. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response[J]. Journal of Plant Genetic Resources, 2023, 24(5): 1223-1235. (in Chinese with English abstract) | |
[3] | SHARONI A M, NURUZZAMAN M, SATOH K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 2011, 52(2): 344-360. |
[4] | ZHANG J, LIAO J Y, LING Q Q, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics, 2022, 23(1): 125. |
[5] | GHORBANI R, ZAKIPOUR Z, ALEMZADEH A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus[J]. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. |
[6] | WANG H T, NI D Q, SHEN J C, et al. Genome-wide identification of the AP2/ERF gene family and functional analysis of GmAP2/ERF144 for drought tolerance in soybean[J]. Frontiers in Plant Science, 2022, 13: 848766. |
[7] | 苟艳丽, 张乐, 郭欢, 等. 植物AP2/ERF类转录因子研究进展[J]. 草业科学, 2020, 37(6): 1150-1159. |
GOU Y L, ZHANG L, GUO H, et al. Research progress on the AP2/ERF transcription factor in plants[J]. Pratacultural Science, 2020, 37(6): 1150-1159. (in Chinese with English abstract) | |
[8] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[9] | AHARONI A, DIXIT S, JETTER R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J]. The Plant Cell, 2004, 16(9): 2463-2480. |
[10] | BROUN P, POINDEXTER P, OSBORNE E, et al. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4706-4711. |
[11] | XU K N, XU X, FUKAO T, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103): 705-708. |
[12] | HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258): 1026-1030. |
[13] | LEE D K, JUNG H, JANG G, et al. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 2016, 172(1): 575-588. |
[14] | OH S J, KIM Y S, KWON C W, et al. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiology, 2009, 150(3): 1368-1379. |
[15] | LU J, JU H P, ZHOU G X, et al. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice[J]. The Plant Journal, 2011, 68(4): 583-596. |
[16] | JIN J H, ZHANG H X, ALI M, et al. The CaAP2/ERF064 regulates dual functions in pepper: plant cell death and resistance to Phytophthora capsici[J]. Genes, 2019, 10(7): 541. |
[17] | LEE J H, HONG J P, OH S K, et al. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants[J]. Plant Molecular Biology, 2004, 55(1): 61-81. |
[18] | LAI Y, DANG F F, LIN J, et al. Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection[J]. Functional Plant Biology, 2014, 41(7): 758-767. |
[19] | YOUM J W, JEON J H, CHOI D, et al. Ectopic expression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization[J]. Planta, 2008, 228(4): 701-708. |
[20] | TANG W, CHARLES T M, NEWTON R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4): 603-617. |
[21] | TANG W, NEWTON R J, LI C, et al. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis[J]. Plant Cell Reports, 2007, 26(1): 115-124. |
[22] | 邹学校, 马艳青, 戴雄泽, 等. 辣椒在中国的传播与产业发展[J]. 园艺学报, 2020, 47(9): 1715-1726. |
ZOU X X, MA Y Q, DAI X Z, et al. Spread and industry development of pepper in China[J]. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. (in Chinese with English abstract) | |
[23] | JIN J H, WANG M, ZHANG H X, et al. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.)[J]. Genome, 2018, 61(9): 663-674. |
[24] | 赵慧, 杨诗勤, 徐凯, 等. 水稻耐旱性基因OsERF65的克隆、表达及转录自激活活性分析[J]. 分子植物育种, 2021, 19(2): 361-369. |
ZHAO H, YANG S Q, XU K, et al. Cloning,expression and trans-activation activity analysis of rice drought tolerance gene OsERF65[J]. Molecular Plant Breeding, 2021, 19(2): 361-369. (in Chinese with English abstract) | |
[25] | 陈悦, 孙明哲, 贾博为, 等. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
CHEN Y, SUN M Z, JIA B W, et al. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response[J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. (in Chinese with English abstract) | |
[26] | RIAZ M W, LU J, SHAH L, et al. Expansion and molecular characterization of AP2/ERF gene family in wheat (Triticum aestivum L.)[J]. Frontiers in Genetics, 2021, 12: 632155. |
[27] | 张余. 水稻抗逆相关基因OsEBP89和OsRMT1功能研究[D]. 武汉: 华中农业大学, 2020. |
ZHANG Y. Functional characterization of two stress related genes OsEBP89 and OsRMT1 in rice[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[28] | 雷雨晴, 张业猛, 王海庆. 扁蓿豆MrERF1的转录激活活性、亚细胞定位及表达分析[J]. 草业科学, 2021, 38(6): 1119-1127. |
LEI Y Q, ZHANG Y M, WANG H Q. Transcriptional activation, subcellular localization, and expression analysis of MrERF1 from Medicago ruthenica[J]. Pratacultural Science, 2021, 38(6): 1119-1127. (in Chinese with English abstract) |
[1] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
[2] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[3] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[4] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[5] | 李天恩, 周思含, 孙洪超, 付媛, 石团员, 闫文朝. 鸡柔嫩艾美耳球虫2种假定致密颗粒蛋白基因的克隆与表达[J]. 浙江农业学报, 2024, 36(3): 503-514. |
[6] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
[7] | 张思懿, 崔博文, 王佳玲, 蔺吉祥, 杨青杰. 非生物胁迫下植物根系的生理与分子响应研究进展[J]. 浙江农业学报, 2024, 36(10): 2391-2401. |
[8] | 郭娜纳, 李伟, 黄立娟, 张涛, 魏兵强. 辣椒抗番茄斑萎病毒研究进展[J]. 浙江农业学报, 2024, 36(10): 2416-2425. |
[9] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[10] | 王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120. |
[11] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[12] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[13] | 罗海林, 袁雷, 闫佳会, 郭青云. 侵染青海辣椒的辣椒隐症病毒2基因组克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1368-1374. |
[14] | 刘琪, 曹影丽, 魏宁波, 杨侃侃, 梁月巧, 宋祥军, 邵颖, 涂健, 祁克宗. 鸡DDX41基因克隆表达、细胞定位及其在禽腺病毒4型感染调控天然免疫中的作用[J]. 浙江农业学报, 2023, 35(5): 1028-1036. |
[15] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||