›› 2020, Vol. 32 ›› Issue (4): 742-752.DOI: 10.3969/j.issn.1004-1524.2020.04.22
• Review • Previous Articles
LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao*
Received:
2019-10-10
Online:
2020-04-25
Published:
2020-04-26
CLC Number:
LI Weifang, WANG Chunlei, WANG Ni, DENG Yuzheng, YAO Yandong, WEI Lijuan, LIAO Weibiao. Research progress on effect of nitric oxide on adventitious root formation in plants[J]. , 2020, 32(4): 742-752.
[1] WANG P C, ZHU J K, LANG Z B.Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins[J]. Plant Signaling & Behavior, 2015, 10(6): e1031939. [2] SANZ L, ALBERTOS P, MATEOS I, et al.Nitric oxide (NO) and phytohormones crosstalk during early plant development[J]. Journal of Experimental Botany, 2015, 66(10): 2857-2868. [3] KONG X Q, WANG T, LI W J, et al.Exogenous nitric oxide delays salt-induced leaf senescence in cotton ( [4] FANCY N N, BAHLMANN A K, LOAKE G J.Nitric oxide function in plant abiotic stress[J]. [5] GEISS G, GUTIERREZ L, BELLINI C.Adventitious root formation: new insights and perspectives[J]. Annual Plant Reviews, 2018, 127-156. [6] KEVERS C, HAUSMAN J F, FAIVRE-RAMPANT O, et al.Hormonal control of adventitious rooting: progress and questions[J]. Journal of Applied Botany, 1997, 71(3/4): 71-79. [7] RICCI A, ROLLI E, DRAMIS L, et al.N, N'-bis-(2, 3-Methylenedioxyphenyl)urea and N, N'-bis-(3, 4-methylenedioxyphenyl)urea enhance adventitious rooting in [8] GUAN L, MURPHY A S, PEER W A, et al.Physiological and molecular regulation of adventitious root formation[J]. Critical Reviews in Plant Sciences, 2015, 34(5): 506-521. [9] LIU J, SHENG L, XU Y, et al. [10] WANG X F, HE F F, MA X X, et al. [11] ZHAO Y, CHENG S F, SONG Y L, et al.The interaction between rice [12] STEFFENS B, RASMUSSEN A.The physiology of adventitious roots[J]. Plant Physiology, 2016, 170(2): 603-617. [13] 张焕欣, 董春娟, 李福凯, 等. 植物不定根发生机理的研究进展[J]. 西北植物学报, 2017, 37(7): 1457-1464. ZHANG H X, DONG C J, LI F K, et al.Progress on the regulatory mechanism of adventitious rooting[J]. [14] HARTMANN H T, KESTER D E.Plant propagation[J]. Soil Science, 1963, 95(1): 89. [15] 廖伟彪, 黄高宝, 郁继华, 等. NO和H2O2在IBA诱导万寿菊不定根形成中的作用[J]. 园艺学报, 2011, 38(5): 939-946. LIAO W B, HUANG G B, YU J H, et al.Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root formation of marigold[J]. [16] LIAO W B, ZHANG M L, HUANG G B, et al.Ca2+ and CaM are involved in NO-and H2O2-induced adventitious root development in marigold[J]. Journal of Plant Growth Regulation, 2012, 31(2): 253-264. [17] XU X T, JIN X, LIAO W B, et al.Nitric oxide is involved in ethylene-induced adventitious root development in cucumber ( [18] JIN X, LIAO W B, YU J H, et al. Nitric oxide is involved in ethylene-induced adventitious rooting in marigold[J]. [19] LANTERI M L, LAXALT A M, LAMATTINA L.Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber[J]. Plant Physiology, 2008, 147(1): 188-198. [20] 黄爱霞, 佘小平. 一氧化氮在萘乙酸诱导不定根形成过程中的作用研究[J]. 陕西师范大学学报(自然科学版), 2011, 39(4): 60-64. HUANG A X, SHE X P.The role of nitric oxide in 1-naphthylacetic acid-induced adventitious roots formation[J]. [21] NEILL S, BRIGHT J, DESIKAN R, et al.Nitric oxide evolution and perception[J]. Journal of Experimental Botany, 2008, 59(1):25-35. [22] MEDINA-ANDRÉS R, SOLANO-PERALTA A, SAUCEDO-VÁZQUEZ J P, et al. The nitric oxide production in the moss [23] GUPTA K J, FERNIE A R, KAISER W M, et al.On the origins of nitric oxide[J]. Trends in Plant Science, 2011, 16(3): 160-168. [24] WILKINSON J Q, CRAWFORD N M.Identification and characterization of a chlorate-resistant mutant of [25] MODOLO L V, AUGUSTO O, ALMEIDA I M G, et al. Decreased arginine and nitrite levels in nitrate reductase-deficient [26] BRIGHT J, DESIKAN R, HANCOCK J T, et al.ABA-induced NO generation and stomatal closure in [27] DOMINGOS P, PRADO A M, WONG A, et al.Nitric oxide: a multitasked signaling gas in plants[J]. Molecular Plant, 2015, 8(4): 506-520. [28] YU M D, LAMATTINA L, SPOEL S H, et al.Nitric oxide function in plant biology: a redox cue in deconvolution[J]. New Phytologist, 2014, 202(4): 1142-1156. [29] MOREAU M, LINDERMAYR C, DURNER J, et al.NO synthesis and signaling in plants-where do we stand?[J]. Physiologia Plantarum, 2010, 138(4): 372-383. [30] ROCKEL P, STRUBE F, ROCKEL A, et al.Regulation of nitric oxide (NO) production by plant nitrate reductase [31] ALDERTON W K, COOPER C E, KNOWLES R G.Nitric oxide synthases: structure, function and inhibition[J]. Biochemical Journal, 2001, 357(3): 593-615. [32] CRAWFORD N M, GALLI M, TISCHNER R, et al.Response to Zemojtel et Al: Plant nitric oxide synthase: back to square one[J]. Trends in Plant Science, 2006, 11(11): 526-527. [33] GUO F Q, OKAMOTO M, CRAWFORD N M.Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science, 2003, 302(5642): 100-103. [34] FLORYSZAK-WIECZOREK J, ARASIMOWICZ-JELONEK M, IZBIAŃSKA K. The combined nitrate reductase and nitrite-dependent route of NO synthesis in potato immunity to [35] PROCHÁZKOVÁ D, HAISEL D, PAVLÍKOVÁ D. Nitric oxide biosynthesis in plants: the short overview[J]. [36] MAMAEVA A S, FOMENKOV A A, NOSOV A V, et al.Regulatory role of nitric oxide in plants[J]. Russian Journal of Plant Physiology, 2015, 62(4): 427-440. [37] URARTE E, ESTEBAN R, MORAN J F, et al.Established and proposed roles of xanthine oxidoreductase in oxidative and reductive pathways in plants[M]//BALUSKA F, VIVANCO J. Signaling and communication in plants. Springer International Publishing, 2014: 15-42. [38] CORPAS F J, PALMA J M, SANDALIO L M, et al.Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea ( [39] MAIA L, MOURA J J G. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases[J]. JBIC Journal of Biological Inorganic Chemistry, 2015, 20(2): 403-433. [40] STÖHR C, STRUBE F, MARX G, et al. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite[J]. Planta, 2001, 212(5/6): 835-841. [41] STÖHR C, STREMLAU S. Formation and possible roles of nitric oxide in plant roots[J]. Journal of Experimental Botany, 2006, 57(3): 463-470. [42] BESSON-BARD A, PUGIN A, WENDEHENNE D.New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology, 2008, 59(1): 21-39. [43] COONEY R V, HARWOOD P J, CUSTER L J, et al.Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids[J]. Environmental Health Perspectives, 1994, 102(5): 460-462. [44] WANG X G, HARGROVE M S.Nitric oxide in plants: the roles of ascorbate and hemoglobin[J]. PLoS One, 2013, 8(12): e82611. [45] BETHKE P C, BADGER M R, JONES R L.Apoplastic synthesis of nitric oxide by plant tissues[J]. The Plant Cell, 2004, 16(2): 332-341. [46] GUPTA K J, STOIMENOVA M, KAISER W M.In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, [47] WENDEHENNE D, PUGIN A, KLESSIG D F, et al.Nitric oxide: comparative synthesis and signaling in animal and plant cells[J]. Trends in Plant Science, 2001, 6(4): 177-183. [48] GAUPELS F, FURCH A C U, WILL T, et al. Nitric oxide generation in [49] RUMER S, GUPTA K J, KAISER W M.Plant cells oxidize hydroxylamines to NO[J]. Journal of Experimental Botany, 2009, 60(7): 2065-2072. [50] BAQUE M A, HAHN E J, PAEK K Y.Induction mechanism of adventitious root from leaf explants of [51] VIDOZ M L, LORETI E, MENSUALI A, et al.Hormonal interplay during adventitious root formation in flooded tomato plants[J]. The Plant Journal, 2010, 63(4): 551-562. [52] HU B, ZHU C G, LI F, et al.LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J]. Plant Physiology, 2011, 156(3): 1101-1115. [53] DRUEGE U, FRANKEN P, LISCHEWSKI S, et al.Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in [54] SHE X P, HUANG A X.Change of nitric oxide and NADPH-diaphorase during the generation and the development of adventitious roots in mung bean hypocotyl cuttings[J]. Acta Botanica Sinica, 2004, 46(9): 1049-1055. [55] XUAN W, XU S, LI M Y, et al.Nitric oxide is involved in hemin-induced cucumber adventitious rooting process[J]. Journal of Plant Physiology, 2012, 169(11): 1032-1039. [56] YADAV S, DAVID A, BALUŠKA F, et al. Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls[J]. Plant Signaling & Behavior, 2013, 8(3): e23196. [57] SHARMA S, SINGH H P, BATISH D R, et al.Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of [58] WU C H, TEWARI R K, HAHN E J, et al.Nitric oxide elicitation induces the accumulation of secondary metabolites and antioxidant defense in adventitious roots of [59] KUNDU P, GILL R, AHLAWAT S, et al.Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops[M]// WANI S H. Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. New York: Academic Press, 2018: 151-220. [60] KAYA C, HIGGS D, ASHRAF M, et al. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper ( [61] LI S W, LI Y, LENG Y, et al.Nitric oxide donor improves adventitious rooting in mung bean hypocotyl cuttings exposed to cadmium and osmotic stresses[J]. Environmental and Experimental Botany, 2019, 164: 114-123. [62] XUAN W, ZHU F Y, XU S, et al.The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process[J]. Plant Physiology, 2008, 148(2): 881-893. [63] ZHU Y C, LIAO W B, NIU L J, et al.Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber[J]. BMC Plant Biology, 2016, 16: 146. [64] PAGNUSSAT G C, LANTERI M L, LAMATTINA L.Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process[J]. Plant Physiology, 2003, 132(3): 1241-1248. [65] PAGNUSSAT G C, LANTERI M L, LOMBARDO M C, et al.Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development[J]. Plant Physiology, 2004, 135(1): 279-286. [66] WEN D, GONG B, SUN S S, et al.Promoting roles of melatonin in adventitious root development of [67] DELLA ROVERE F, FATTORINI L, D'ANGELI S, et al. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of [68] KONG D D, JU C L, PARIHAR A, et al. [69] TANG R J, ZHAO F G, GARCIA V J, et al.Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in [70] LANTERI M L, PAGNUSSAT G C, LAMATTINA L.Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006, 57(6): 1341-1351. [71] 李春兰, 牛丽涓, 胡琳莉, 等. 干旱条件下钙离子对一氧化氮诱导黄瓜不定根发生的影响[J]. 应用生态学报, 2017, 28(11): 3619-3626. LI C L, NIU L J, HU L L, et al.Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress[J]. [72] QI F, XIANG Z X, KOU N H, et al.Nitric oxide is involved in methane-induced adventitious root formation in cucumber[J]. Physiologia Plantarum, 2017, 159(3): 366-377. [73] LIAO W B, XIAO H L, ZHANG M L.Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover [74] 张美玲, 廖伟彪, 肖洪浪. 一氧化氮和过氧化氢对万寿菊不定根形成的影响[J]. 中国沙漠, 2012, 32(1): 105-111. ZHANG M L, LIAO W B, XIAO H L.Effect of nitric oxide and hydrogen peroxide on adventitious root development of marigold[J]. [75] LIAO W B, HUANG G B, YU J H, et al.Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold[J]. The Journal of Horticultural Science and Biotechnology, 2011, 86(2): 159-165. [76] BAI X G, TODD C D, DESIKAN R, et al.N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide-and nitric oxide-dependent cyclic GMP signaling in mung bean[J]. Plant Physiology, 2012, 158(2): 725-736. [77] LI S W, XUE L G.The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings[J]. In Vitro Cellular & Developmental Biology-Plant, 2010, 46(2): 142-148. [78] LI M Y, CAO Z Y, SHEN W B, et al.Molecular cloning and expression of a cucumber ( [79] ZHU Y C, LIAO W B, WANG M, et al.Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber[J]. Journal of Plant Physiology, 2016, 195: 50-58. |
[1] | CHENG Jing, LIU Jiming, WANG Shu, WANG Deng, LI Lixia, XU Guorui, CHEN Meng, HUANG Luting. Plasticity of a karst endemic plant Juglans regia L. f. luodianense Liu et Xu in response to soil moisture [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 259-269. |
[2] | HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277. |
[3] | WANG Zhihui, PENG Hua, YANG Puxiang, JIANG Xinfeng, LI Wenjin, YUE Cuinan, LI Chen, LI Yansheng. Phenotypic variation and resource value evaluation of natural hybrid progenies of seventeen Huangjinju tea plants [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 298-307. |
[4] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. |
[5] | SU Xuesi, ZHANG Yubao, WANG Ruoyu, WANG Yajun, TANG Guoliang, JIN Weijie. Prokaryotic expression of Plantago asiatica mosaic virus capsid protein and preparation of its polyclonal antibody [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 104-111. |
[6] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[7] | ZHENG Xusong, ZHONG Liequan, WANG Huifu, CHEN Fangjing, CHENG Liping, XU Qiqiang, LI Yang, ZHONG Xuhua, LYU Zhongxian. Demonstration on rice pests control by fertilizer regulation technique in different geographic rice growing areas of Zhejiang Province [J]. , 2020, 32(9): 1656-1664. |
[8] | CHEN Tian, BAO Ningying, DU Chongxuan, LIU Yungen. Growth and arsenic enrichment characteristics of Typha angustifolia L. under different arsenic pollution levels [J]. , 2020, 32(9): 1672-1682. |
[9] | XU Na, WANG Dahai, DU Chuanyin, DU Shasha, WANG Xiaomeng, ZHANG Yan, ZHANG Yuqin, WU Yuanhua, GUAN Ensen, SHI Yi. Effects of planting space on growth and development of tobacco seedlings [J]. , 2020, 32(8): 1342-1350. |
[10] | LIU Kunju, ZHANG Xiaohui, PANG Youzhi, ZHAO Shujuan, QI Yanxia, WANG Qiankun. Relationship of plumage color with expression and polymorphism of GNAS gene in Korean quail [J]. , 2020, 32(8): 1369-1377. |
[11] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
[12] | NIU Suzhen, ZHAO Zhifei, SONG Qinfei, CHEN Zhengwu. Eco-environmental diversity of wild tea germplasms in Guizhou Province [J]. , 2020, 32(7): 1223-1232. |
[13] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[14] | KE Yiqiang, GUO Penghui, MA Hongxin, YANG Xuhua, GAO Dandan, LIU Xiangjun, MA Zhongren, DING Gongtao. Rapid propagation system establishment of Lanzhou lily [J]. , 2020, 32(6): 1000-1008. |
[15] | YIN Linjiang, ZHOU Zhongfa, HUANG Denghong, SHANG Mengjia. Extraction of individual plant of pitaya in Karst Canyon Area based on point cloud data of UAV image matching [J]. , 2020, 32(6): 1092-1102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1986
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 760
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||