Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (3): 633-642.DOI: 10.3969/j.issn.1004-1524.20240278
• Environmental Science • Previous Articles Next Articles
CHEN Jiayi1(), ZHOU Qiaojuan1, OU Qiuxue1, CHEN Shufang1, ZHANG Jia’en1,2,3, WEI Hui1,2,3,*(
)
Received:
2024-03-18
Online:
2025-03-25
Published:
2025-04-02
CLC Number:
CHEN Jiayi, ZHOU Qiaojuan, OU Qiuxue, CHEN Shufang, ZHANG Jia’en, WEI Hui. Effects of sterilization methods on physiochemical properties of lateritic red soil in south China[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 633-642.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240278
处理 Treatment | 细菌数量 Bacteria number/(CFU·g-1) | 灭菌率 Sterilization rate/% |
---|---|---|
CK | 19 400±2 550 | — |
CF | 153±19 | 99.21 |
GR | 0 | 100 |
AU | 0 | 100 |
D3 | 0 | 100 |
D6 | 0 | 100 |
Table 1 Effect of sterilization methods on soil bacteria
处理 Treatment | 细菌数量 Bacteria number/(CFU·g-1) | 灭菌率 Sterilization rate/% |
---|---|---|
CK | 19 400±2 550 | — |
CF | 153±19 | 99.21 |
GR | 0 | 100 |
AU | 0 | 100 |
D3 | 0 | 100 |
D6 | 0 | 100 |
Fig.1 Effects of sterilization methods on soil physiochemical properties Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
Fig.4 Correlation analysis of soil physiochemical properties CEC, Cation exchange capacity; TC, Total carbon content; TN, Total nitrogen content; C/N, Carbon/nitrogen ratio; DOC, Dissolved organic carbon content; N H 4 +-N, Ammonium nitrogen content; AK, Available potassium content. “*” “**” “***” represent significant level of P<0.05, P<0.01, P<0.001, respectively.
Fig.5 Principal component analysis of soil physiochemical properties under treatments “*” on the box in the above figure is an outlier identifier, indicating that the test result is identified by the statistical software as an outlier (more than the first quartile or third quartile ±1.5 times the interquartile range). Because these observations were not removed from the analysis in this study, it is marked in the figure.
Fig.6 Effect of sterilization treatment on physiochemical properties of lateritic red soil “?” indicates increase, while “?” indicates decrease. CF, Chloroform fumigation; GR, Gamma radiation; AU, Autoclaving; D3, Dry heat sterilization for 3 h; D6, Dry heat sterilization for 6 h.
[1] | LIU X W, HUANG Y, GUAN H, et al. Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake[J]. Science of the Total Environment, 2023, 875: 162490. |
[2] | LI K, DILEGGE M J, MINAS I S, et al. Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome[J]. Rhizosphere, 2019, 12: 100176. |
[3] | ŠMÍDOVÁ K, KIM S, HOFMAN J. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils[J]. Chemosphere, 2017, 179: 222-231. |
[4] | WOLF D C, DAO T H, SCOTT H D, et al. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties[J]. Journal of Environmental Quality, 1989, 18(1): 39-44. |
[5] | RAZAVI S, LAKZIAN A. Evaluation of chemical and biological consequences of soil sterilization methods[J]. Caspian Journal of Environmental Sciences, 2007, 5: 87-91. |
[6] | 谢越, 杨高文, 周翰舒, 等. 丛枝菌根真菌研究中土壤灭菌方法综述[J]. 草业科学, 2012, 29(5): 724-732. |
XIE Y, YANG G W, ZHOU H S, et al. A review on methods of sterilization and inhibition of arbuscular mycorrhizal fungi in soil[J]. Pratacultural Science, 2012, 29(5): 724-732. (in Chinese with English abstract) | |
[7] | KRAUßE T, SCHÜTZE E, PHIELER R, et al. Changes in element availability induced by sterilization in heavy metal contaminated substrates: a comprehensive study[J]. Journal of Hazardous Materials, 2019, 370: 70-79. |
[8] | KATAN J. Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens[J]. Phytopathology, 1976, 66(5): 683. |
[9] | MCNAMARA N P, BLACK H I J, BERESFORD N A, et al. Effects of acute gamma irradiation on chemical, physical and biological properties of soils[J]. Applied Soil Ecology, 2003, 24(2): 117-132. |
[10] | KALE S P, RAGHU K. Efficacy of different soil sterilization methods[J]. Chemosphere, 1982, 11(12): 1243-1247. |
[11] | 梁作盼, 李立青, 万方浩, 等. 土壤微生物对紫茎泽兰生长与竞争的反馈: 不同灭菌方法的比较[J]. 中国生态农业学报, 2016, 24(9): 1223-1230. |
LIANG Z P, LI L Q, WAN F H, et al. Feedback of soil biota on Ageratina adenophora growth and competitiveness with native plant: a comparison of different sterilization methods[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1223-1230. (in Chinese with English abstract) | |
[12] | LEES K, FITZSIMONS M, SNAPE J, et al. Soil sterilisation methods for use in OECD 106: how effective are they?[J]. Chemosphere, 2018, 209: 61-67. |
[13] | BERNS A E, PHILIPP H, NARRES H D, et al. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy[J]. European Journal of Soil Science, 2008, 59(3): 540-550. |
[14] | KELSEY J W, SLIZOVSKIY I B, PETERS R D, et al. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p, p’-DDE and anthracene by earthworms[J]. Environmental Pollution, 2010, 158(6): 2251-2257. |
[15] | BROOKES P C, KRAGT J F, POWLSON D S, et al. Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature[J]. Soil Biology and Biochemistry, 1985, 17(6): 831-835. |
[16] | 曹鹏, 付学鹏, 王绍娴, 等. 土壤高压蒸汽灭菌的条件优化及其对植物生长的影响[J]. 江苏农业科学, 2016, 44(9): 456-458. |
CAO P, FU X P, WANG S X, et al. Optimization of soil high-pressure steam sterilization conditions and its effect on plant growth[J]. Jiangsu Agricultural Sciences, 2016, 44(9): 456-458. (in Chinese with English abstract) | |
[17] | 郑嘉慧, 陈鸿洋, 李金全, 等. 不同土壤灭菌方法对土壤微生物活性的影响[J]. 复旦学报(自然科学版), 2017, 56(6): 681-691. |
ZHENG J H, CHEN H Y, LI J Q, et al. The effects of different soil sterilization treatments on soil microbial activity[J]. Journal of Fudan University(Natural Science), 2017, 56(6): 681-691. (in Chinese with English abstract) | |
[18] | 倪国荣, 潘晓华, 石庆华, 等. 灭菌方式对红壤性水稻土养分及水稻生长的影响[J]. 核农学报, 2018, 32(12): 2431-2437. |
NI G R, PAN X H, SHI Q H, et al. Effect of sterilization methods on soil nutrients of red soil paddy and rice growth[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2431-2437. (in Chinese with English abstract) | |
[19] | 农泽梅, 史国英, 曾泉, 等. 赤红壤条件下宿根甘蔗根际可培养细菌的多样性研究[J]. 西南农业学报, 2019, 32(5): 1079-1086. |
NONG Z M, SHI G Y, ZENG Q, et al. Diversity of culturable rhizosphere bacteria of ratoon sugarcane grown in latosolic red soil condition[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(5): 1079-1086. (in Chinese with English abstract) | |
[20] | 张晓龙, 杨倩楠, 李祥东, 等. 基于主成分和聚类分析的赤红壤区不同土地利用方式土壤肥力综合评价[J]. 江苏农业科学, 2023, 51(9): 247-254. |
ZHANG X L, YANG Q N, LI X D, et al. Comprehensive evaluation of soil fertility of different land use modes in lateritic red soil area based on principal component and cluster analysis[J]. Jiangsu Agricultural Sciences, 2023, 51(9): 247-254. (in Chinese with English abstract) | |
[21] | WEI H, ZHANG K, ZHANG J E, et al. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China[J]. Soil and Tillage Research, 2018, 181: 110-116. |
[22] | DIETRICH P, CESARZ S, EISENHAUER N, et al. Effects of steam sterilization on soil abiotic and biotic properties[J]. Soil organisms, 2020, 92(2):99-108. |
[23] | LI X M, LIN Z, LUO C L, et al. Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: evidence of functional bacteria using DNA-stable isotope probing[J]. Soil Biology and Biochemistry, 2015, 81: 168-177. |
[24] | POWLSON D S, JENKINSON D S. The effects of biocidal treatments on metabolism in soil Ⅱ: gamma irradiation, autoclaving, air-drying and fumigation[J]. Soil Biology and Biochemistry, 1976, 8(3): 179-188. |
[25] | TREVORS J T. Sterilization and inhibition of microbial activity in soil[J]. Journal of Microbiological Methods, 1996, 26(1/2): 53-59. |
[26] | 吕贻忠, 李保国. 土壤学实验[M]. 北京: 中国农业出版社, 2010. |
[27] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[28] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[29] | REN X W, TANG J C, LIU X M, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution, 2020, 256: 113347. |
[30] | LOTRARIO J B, STUART B J, LAM T, et al. Effects of sterilization methods on the physical characteristics of soil: implications for sorption isotherm analyses[J]. Bulletin of Environmental Contamination and Toxicology, 1995, 54(5): 668-675. |
[31] | SINGH I B, CHATURVEDI K, YEGNESWARAN A H. Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash[J]. Environmental Technology, 2007, 28(7): 713-721. |
[32] | LABEDA D P, BALKWILL D L, JR CASIDA L E. Soil sterilization effects on in situ indigenous microbial cells in soil[J]. Canadian Journal of Microbiology, 1975, 21(3): 263-269. |
[33] | WANG Y L, XU Y M, HUANG Q Q, et al. Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite[J]. Environmental Pollution, 2021, 273: 116446. |
[34] | YAMAMOTO T, ULTRA V U Jr, TANAKA S, et al. Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment[J]. Soil Science and Plant Nutrition, 2008, 54(6): 886-894. |
[35] | DAVIS R D. Bacteriostasis in soils sterilized by gamma irradiation and in reinoculated sterilized soils[J]. Canadian Journal of Microbiology, 1975, 21(4): 481-484. |
[36] | 张辉, 张佳宝, 赵炳梓, 等. 高温高压间歇灭菌对中国典型土壤性质的影响[J]. 土壤学报, 2011, 48(3): 540-548. |
ZHANG H, ZHANG J B, ZHAO B Z, et al. Influence of autoclaving sterilization on properties of typical soils in China[J]. Acta Pedologica Sinica, 2011, 48(3): 540-548. (in Chinese with English abstract) | |
[37] | BANK T L, KUKKADAPU R K, MADDEN A S, et al. Effects of gamma-sterilization on the physico-chemical properties of natural sediments[J]. Chemical Geology, 2008, 251(1/2/3/4): 1-7. |
[38] | ENO C F, POPENOE H. Gamma radiation compared with steam and methyl bromide as a soil sterilizing agent[J]. Soil Science Society of America Journal, 1964, 28(4): 533-535. |
[39] | STANOVICK R, GIDDENS J, MCCREERY R A. Effect of ionizing radiation on soil microorganisms[J]. Soil Science, 1961, 92(3): 183-187. |
[40] | LENSI R, LESCURE C, STEINBERG C, et al. Dynamics of residual enzyme activities, denitrification potential, and physico-chemical properties in a γ-sterilized soil[J]. Soil Biology and Biochemistry, 1991, 23(4): 367-373. |
[41] | 冯家东, 吴炳孙, 王晶晶. 基于协同克里格的橡胶园土壤速效钾空间变异性[J]. 应用生态学报, 2022, 33(4): 915-921. |
FENG J D, WU B S, WANG J J. Spatial variability of soil available potassium in rubber plantation based on coKriging[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 915-921. (in Chinese with English abstract) | |
[42] | 王筝, 鲁剑巍, 张文君, 等. 田间土壤钾素有效性影响因素及其评估[J]. 土壤, 2012, 44(6): 898-904. |
WANG Z, LU J W, ZHANG W J, et al. Influential factors on soil available potassium evaluation in agriculture[J]. Soils, 2012, 44(6): 898-904. (in Chinese with English abstract) | |
[43] | LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917. |
[44] | WANG J J, LIU Y N, BOWDEN R D, et al. Long-term nitrogen addition alters the composition of soil-derived dissolved organic matter[J]. ACS Earth and Space Chemistry, 2020, 4(2): 189-201. |
[45] | 李彬彬, 武兰芳, 许艳艳, 等. 秸秆还田土壤溶解性有机碳的官能团特征及其与CO2排放的关系[J]. 农业环境科学学报, 2017, 36(12): 2535-2543. |
LI B B, WU L F, XU Y Y, et al. Relationship between functional groups of soil dissolved organic carbon and CO2 emissions with crop residues incorporation to soil[J]. Journal of Agro-Environment Science, 2017, 36(12): 2535-2543. (in Chinese with English abstract) | |
[46] | SARATHY S R, MOHSENI M. The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter[J]. Environmental Science & Technology, 2007, 41(24): 8315-8320. |
[47] | JAFFRAIN J, GÉRARD F, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal, 2007, 71(6): 1851-1858. |
[48] | DILLING J, KAISER K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry[J]. Water Research, 2002, 36(20): 5037-5044. |
[49] | KALBITZ K, SCHMERWITZ J, SCHWESIG D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003, 113(3/4): 273-291. |
[50] | 许贤伦, 钱旸, 张兴旺, 等. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
XU X L, QIAN Y, ZHANG X W, et al. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge[J]. CIESC Journal, 2022, 73(9): 4025-4033. (in Chinese with English abstract) | |
[51] | LAURENT C, BRAVIN M N, CROUZET O, et al. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination[J]. Science of the Total Environment, 2020, 709: 135927. |
[52] | COWARD E K, OHNO T, PLANTE A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036-1044. |
[53] | LAROWE D E, VAN CAPPELLEN P. Degradation of natural organic matter: a thermodynamic analysis[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2030-2042. |
[54] | LONG H, WASAKI J. Effects of phosphate-solubilizing bacteria on soil phosphorus fractions and supply to maize seedlings grown in lateritic red earths and cinnamon soils[J]. Microbes and Environments, 2023, 38(2): ME22075. |
[55] | CHEN X M, LIU M Y, XU Z Y, et al. Influences of temperature and moisture on abiotic and biotic soil CO2 emission from a subtropical forest[J]. Carbon Balance and Management, 2021, 16(1): 18. |
[56] | 吴英海, 方建德, 韩蕊, 等. SM2在2种基质中去除的影响因素[J]. 环境工程学报, 2013, 7(3): 969-974. |
WU Y H, FANG J D, HAN R, et al. Factors influencing removal of sulfamethazine in two substrates[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 969-974. (in Chinese with English abstract) | |
[57] | LIU J B, ZHAO S, ZHANG R, et al. How important is abiotic dissipation in natural attenuation of polycyclic aromatic hydrocarbons in soil?[J]. Science of the Total Environment, 2021, 758: 143687. |
[58] | 赵炳梓, 蒋艳. 外源细菌添加对红壤吸附病毒的影响[J]. 土壤学报, 2014, 51(3): 505-512. |
ZHAO B Z, JIANG Y. Virus adsorption onto red soil as influenced by additional bacteria[J]. Acta Pedologica Sinica, 2014, 51(3): 505-512. (in Chinese with English abstract) | |
[59] | 林婉奇, 薛立. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响[J]. 生态学报, 2020, 40(12): 4188-4197. |
LIN W Q, XUE L. Analysis of effects of nitrogen deposition and precipitation on soil microbial function diversity based on BIOLOG technique[J]. Acta Ecologica Sinica, 2020, 40(12): 4188-4197. (in Chinese with English abstract) | |
[60] | TANG S, MA Q X, MARSDEN K A, et al. Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents[J]. Soil Biology and Biochemistry, 2023, 180: 109019. |
[61] | SUN Y, YUE G S, MA J. Transport and natural attenuation of benzene vapor from a point source in the vadose zone[J]. Chemosphere, 2023, 323: 138222. |
[62] | DUAN Y L, LI D, LI Z D, et al. Enhancing phosphorus bioavailability in lateritic red soil: combining Bacillus subtilis inoculated microbial organic fertilizer with reduced chemical input[J]. Soil Use and Management, 2024, 40(1): e12987. |
[1] | XIONG Houquan, JIANG Jie. Discrete element parameter calibration and testing of interaction between yellow lateritic red soil and trenching components [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1400-1412. |
[2] | ZHANG Zheng\|hai, ZHANG Yue, LI Ai\|min, ZHANG Ya\|yu*, CHEN Xiao\|dan. Effects of salt strength and autoclaving on pH and solidification of medium#br# [J]. , 2015, 27(10): 1757-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||