宁春4号与河东乌麦杂交F2代抗病性及分子标记鉴定
王掌军1,2, 刘妍1,3, 张双喜4, 刘凤楼1,2, 李清峰1,2, 张晓岗1, 刘生祥1, 贾彪1,*
1.宁夏大学 农学院, 宁夏 银川 750021
2.宁夏优势特色作物现代分子育种重点实验室, 宁夏 银川 750021
3.黑龙江禾田丰泽兴农科技开发有限公司,黑龙江 哈尔滨 150028
4.宁夏农林科学院 农作物研究所,宁夏 银川 750001
*通信作者,贾彪,E-mail: jiabiao2008@163.com

作者简介:王掌军(1978—),男,甘肃天水人,副教授,博士,研究方向为小麦遗传育种。E-mail: wangzj-gs@126.com

摘要

为给宁夏小麦抗病育种提供优异资源,以宁春4号、河东乌麦及其杂交F2代331个单株为材料,进行了群体抗病性与分子标记鉴定。结果表明:宁春4号中感白粉病、条锈病和叶锈病,河东乌麦中抗至高抗白粉病、中抗条锈病和叶锈病。在F2代分别鉴定出68、54、52个单株抗白粉病、条锈病、叶锈病,比例依次为20.54%、16.32%、15.71%,其中,50个单株同时抗白粉病和条锈病,44个抗白粉病和叶锈病,32个抗条锈病和叶锈病,29个抗白粉病、条锈病和叶锈病。在F2代群体中检测到239个单株携带 Pm16基因,22.59%携带该基因的单株表现田间抗白粉病;202个携带 Yr2基因,16.83%携带该基因的单株抗条锈病;246个携带 Lr24,17.07%携带该基因的单株抗条锈病;148个单株同时携带基因 Pm16和 Yr2,185个单株同时携带基因 Pm16和 Lr24,155个单株同时携带基因 Yr2和 Lr24,119个单株同时携带基因 Pm16、 Yr2和 Lr24。新开发的6个SSR标记共检测到10个抗病性数量性状基因座(QTL),涉及2A、5A、3B、5D等4条染色体,加性效应为-0.15~0.08,对表型贡献率为2%~4%,连锁系数(LOD值)最大为10.40,其中,5A、3B和5D染色体存在抗病的QTL富集区。

关键词: 小麦; 杂交后代; 抗病性; 分子标记; 数量性状基因座
中图分类号:S512.1 文献标志码:A 文章编号:1004-1524(2019)05-0677-11
Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat
WANG Zhangjun1,2, LIU Yan1,3, ZHANG Shuangxi4, LIU Fenglou1,2, LI Qingfeng1,2, ZHANG Xiaogang1, LIU Shengxiang1, JIA Biao1,*
1. School of Agriculture, Ningxia University, Yinchuan 750021, China
2. Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
3. Heilongjiang Hetian Fengze Agriculture Science and Technology Development Co., Ltd., Harbin 150028, China
4. Institute of Crop Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750001, China
Abstract

To provide good resources for Ningxia wheat breeding in disease resistance, Ningchun No.4, Hedong black wheat and 331 individual plants of F2 generation of Ningchun No.4 × Hedong black wheat were used as materials, disease resistance and molecular markers of the populations were identificated. The results showed that Ningchun No. 4 was moderate susceptible to powdery mildew, stripe rust, leaf rust, and Hedong black wheat was moderate to highly resistant to powdery mildew, moderate resistant to stripe rust and leaf rust. There were 68, 54, 52 individual plants resistant to powdery mildew, stripe rust, leaf rust in hybrids, respectively, and the rate was 20.54%, 16.32% and 15.71% in turn. In them, 50 individual plants were resistant to powdery mildew and stripe rust, 44 plants were resistant to powdery mildew and leaf rust, 32 plants were resistant to stripe rust and leaf rust, and 29 plants were resistant to powdery mildew, leaf rust and leaf rust simultaneously. There were 239 individual plants carried gene Pm16, 22.59% plants carried this gene were resistant to powdery mildew in field, 16.83% of 202 plants carried gene Yr2 were resistant to stripe rust, 17.07% of 246 plants carried gene Lr24 were resistant to leaf rust, 148 plants carried genes Pm16 and Yr2 simultaneously, 185 plants carried genes Pm16 and Lr24, 155 plants carried genes Yr2 and Lr24, 119 plants carried genes Pm16, Yr2 and Lr24 simultaneously. Ten disease resistance quantitative trait loci (QTL) were detected by six SSR markers, which involved in chromosomes 2A, 5A, 3B and 5D, their additive effects were from -0.15 to 0.08, the contribution rates to phenotype were from 2% to 4%, maximum logarithm of odds (LOD) score was 10.40, and QTL enrichment regions of disease resistance existed in 5A, 3B and 5D chromosome.

Keyword: wheat ( T.riticum aestivum L.); hybrid progeny; disease resistance; molecular marker; quantitative trait locus

小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一, 其面积和产量均居谷类作物之首。由于长期的人工选择和栽培, 导致大量小麦优异基因丢失。同时, 由于育种家一贯追求矮秆、高产的育种目标, 加之近年来水肥条件和群体密度提高且品种单一化种植, 当今栽培小麦遗传基础日趋狭窄、脆弱, 使得小麦极易受到全球气候变化和病虫害的侵染, 不能适应高产、稳产和可持续发展的需要[1, 2]。我国小麦主要病害有锈病、白粉病、赤霉病、黑穗病、根腐病、黄矮病、纹枯病等。小麦病害是小麦生产中重要的制约因素之一[3]。宁夏属于小麦条锈病流行区域, 叶锈病也有加大的趋势, 连续4 a白粉病成为宁夏小麦生产上的第一大病害[4, 5]。小麦白粉病是由小麦禾布氏白粉菌(Blumeria graminis f. sp. tritici)引起的真菌性病害, 在病害发生一般年份可使小麦减产5%~34%[6]。自Waterhouse首次报道了小麦Thew中的一对显性抗白粉病基因以来, 科学家们在普通小麦及其近缘种属中先后发现了多个抗性基因, 国际上已正式命名了分布在60个位点的84个抗白粉病基因[7, 8, 9, 10, 11, 12, 13, 14, 15]。这些抗性基因在不同时期不同程度地提高了小麦抗白粉病的能力, 尤其携带Pm8、Pm17、Pm20等抗白粉病基因的小麦-黑麦1RS/1BL易位系和携带Pm21基因的小麦-簇毛麦6VS/6BL易位系在世界小麦育种中应用最为广泛[16, 17, 18, 19]。小麦锈病分条锈病、秆锈病、叶锈病3种, 危害部位以叶片为主, 叶鞘、茎秆和穗部也可受害。流行年份受害小麦可减产30%以上, 甚至绝收[20, 21]。条锈病是由专性寄生条形柄锈菌(Puccinia striiformis f. sp. tritici)引起的真菌性病害, 我国曾发生4次全国性条锈病大流行, 1905年条锈病造成的损失最严重, 使小麦减产60亿kg[22]。目前, 国际上正式命名的小麦条锈病抗性基因有80个[23, 24]。由叶锈菌(Puccinia recondita f. sp. tritici)引起的小麦叶锈病也是小麦的主要病害之一, 已经发现的小麦抗叶锈病基因有100多个, 正式命名的有68个[25, 26]

由于小麦白粉病菌、锈病菌具有群体大、适应范围广、生理小种变异快等特点, 品种抗病性丧失问题严重[27, 28]。在常规抗病育种的同时, 利用分子标记辅助选择技术, 实现了品种间优异基因高效筛选[29, 30]、基因聚合[31, 32, 33], 为抗病育种提供了可供利用的中间材料。宁夏主栽小麦品种宁春4号综合农艺性状和产量表现好, 但感白粉病、叶锈病和条锈病; 育成于山西运城的河东乌麦高抗白粉病、中抗条锈病和叶锈病。在前期对这2个小麦品种遗传性状与分子标记分析的基础上[34, 35], 构建了杂交组合群体, 对其F2代进行抗病性和分子标记鉴定, 以期从后代中发掘宁夏小麦抗病性改良的育种中间材料和分子标记。

1 材料与方法
1.1 材料

宁春4号为宁夏主栽小麦品种, 河东乌麦引自山西省运城学院杜磊博士。2016年在宁夏大学教学实验农场组配宁春4号与河东乌麦正反交组合, 同年将收获的杂交种子在云南南繁加代, 2017年将收获的种子种植于宁夏大学实验农场, 单粒点播, 每行10粒, 行长1.1 m, 行宽0.2 m, 获得331个单株的F2后代群体, 其中正交后代201株(编号001— 007、013— 206), 反交后代130株(编号008— 012、207— 331)。

1.2 小麦抗病性鉴定

种植宁夏古老地方品种红秃子作为感白粉病、感锈病诱发圃, 采用白粉菌混合小种(收集于宁夏当地)、条锈菌和叶锈菌的混合小种(来自西北农林科技大学植物病理研究所)与马铃薯粉混合。在5月初, 17:00左右接种于分蘖期小麦, 之后覆膜并灌水, 第2天早上揭膜。在小麦成株期调查田间白粉病、条锈病和叶锈病抗性。

成株期白粉病田间鉴定参照0~9级标准:0级为免疫(immune, I), 0i级为近免疫(nearly immune, NI), 1、2级为高抗(highly resistant, HR), 3、4级为中抗(moderate resistant, MR), 5、6级为中感(moderate susceptible, MS), 7、8级为高感(highly susceptible, HS), 9级为极感(extremely susceptible, ES)[36]

锈病抗性鉴定采用0~5级标准:0、1、2、3、4、5级的抗病性和病情指数分别为免疫(I)、0, 高抗(HR)、0~20, 中抗(MR)、20~40, 中感(MS)、40~60, 高感(HS)、60~80, 极感(ES)、80~100[37]。病情指数(DI)=x1a1+x2a2+……+xnan/nT× 100。式中, x为普遍率, a为严重度, n为最大严重度, T为调查样品数。

1.3 小麦抗病性分子标记分析

根据小麦7个部分同源群小卫星区设计SSR标记, 利用能够在宁春4号与河东乌麦间稳定扩增的49个SSR标记[35]进行QTL分析, 其中对本研究材料抗病性有明确QTL定位结果的6个标记名称和序列见表1。3个分别与白粉病、条锈病和叶锈病相关的标记Xgwm159-5B、WMC364和STS24-16参照文献[38, 39, 40], 具体信息见表1。所有标记均由生工生物工程(上海)股份有限公司合成。

表1 分子标记序列信息 Table 1 Information of molecular marker sequences

基因组DNA的提取采用SDS法[41]。PCR反应体系(10 μ L):10× reaction buffer 2 μ L, MgCl2 (25 mmol· L-1)0.8 μ L, dNTPs(2.5 mmol· L-1)0.8 μ L, 上、下游引物(10 μ mol· L-1)各0.2 μ L, 模板DNA 100 ng, Taq DNA聚合酶(5 U· μ L-1)0.05 μ L, 加ddH2O至总体积10 μ L。PCR扩增程序:94 ℃ 3 min; 94 ℃ 30 s, 55~60 ℃ 45 s, 72 ℃ 1 min, 34个循环; 72 ℃ 10 min, 4 ℃保存。扩增产物检测:采用8%聚丙烯酰胺凝胶电泳检测, 电泳时总电压为180 V, 电泳1.5 h左右, 经银染后观察并照相, 统计扩增条带。

1.4 数据统计

采用Excel 2013对抗病性和分子标记结果进行统计。用MapManager QTXb 20进行QTL定位, 取概率值P< 0.05的连锁系数(logarithm of odds score, LOD值)作为判断QTL存在的阈值; 利用Kosambi函数中单标记回归分析的方法进行QTL分析, 检测亲本间有多态性的引物在F2群体中的分布, 根据电泳谱带结果, 建立SSR标记数据库:与母本相同的带型记为“ B” , 与父本相同的带型记为“ A” , 杂合带记为“ H” , 缺失记为“ -” 。将331个F2单株的分子标记结果与抗病性数据相结合, 运用MapManager QTXb 20软件检测相关QTL位点, QTL命名公式为:小写字母q+大写英文字母目标性状的代称+所在染色体号数。QTL全称通常用斜体表示, 如在2A染色体上, 与穗长相关的QTL位点命名为“ qSL2A” 。

2 结果与分析
2.1 宁春4号与河东乌麦抗病性鉴定

对2个亲本进行了苗期白粉病和成株期白粉病、条锈病、叶锈病抗性鉴定, 结果见图1:宁春4号苗期感白粉病, 成株期感白粉病、条锈病和叶锈病; 河东乌麦苗期和成株期均表现抗病。2016年、2017年2个亲本成株期的田间抗病性见表2。河东乌麦的田间白粉病抗性较宁春4号强, 宁春4号的2年病级均为5~6级, 属于中感; 河东乌麦的2年病级分别为1~2、2~3级, 分别为高抗、中抗至高抗类型。河东乌麦表现出较强的抗条锈病, 宁春4号2年的病级、抗病性均分别为3级、中感, 病情指数分别为46.67、43.88; 河东乌麦2年病级、抗病性均分别为2级、中抗, 病情指数分别为30.00~33.33、21.66~28.33。此外, 田间叶锈病抗性表明, 宁春4号为3级、中感, 病情指数分别为41.48、49.33; 河东乌麦为2级、中抗, 病情指数分别为23.33~26.66、30.00~35.00。

图1 宁春4号与河东乌麦成株期旗叶上的病情
苗期1~3为宁春4号上白粉病, 4~6为河东乌麦上白粉病。成株期1~3依次为宁春4号上白粉病、条锈病、叶锈病; 4~6依次为河东乌麦上白粉病、条锈病、叶锈病。
Fig.1 Disease on flag leaves of Ningchun No.4 and Hedong black wheat
Seedling stage, 1-3 were powdery mildew on Ningchun No.4, 4-6 were powdery mildew on Hedong black wheat. Adult stage, 1-3 were powdery mildew, stripe rust, leaf rust on Ningchun No.4, respectively, 4-6 were powdery mildew, stripe rust, leaf rust on Hedong black wheat.

表2 宁春4号与河东乌麦田间抗病性统计结果 Table 2 Statistical results on disease resistance of Ningchun No.4 and Hedong black wheat in field
2.2 宁春4号与河东乌麦杂交F2代抗病性鉴定

对宁春4号与河东乌麦杂交F2代群体331个单株进行成株期白粉病、条锈病和叶锈病抗性鉴定, 结果见表3。在F2代群体中分别有33(占9.97%)、3(0.91%)、2(0.60%)个单株表现为高抗白粉病(病级1~2级)、条锈病和叶锈病(1级); 分别有35(占10.57%)、51(15.41%)、50(15.11%)个单株表现为中抗白粉病(3~4级)、条锈病和叶锈病(2级)。50个(占15.11%)同时抗白粉病和条锈病, 44个(13.29%)同时抗白粉病和叶锈病, 32个(9.67%)同时抗条锈病和叶锈病, 29个(8.76%)同时抗白粉病、条锈病和叶锈病。

表3 宁春4号与河东乌麦F2群体抗病类型和数量 Table 3 Types and numbers of disease resistance of F2 hybrids from Ningchun No.4 × Hedong black wheat
2.3 宁春4号与河东乌麦杂交F2代分子标记

2.3.1 抗病性相关分子标记辅助选择

利用白粉病基因Pm16等位基因标记Xgwm159-5B(目标片段197 bp)、条锈病基因Yr2标记WMC364(201~207 bp)和叶锈病基因Yr2标记STS24-16(180~190 bp), 检测Pm16、Yr2和Yr2在F2代中的分布。表4表明, 有239个单株(占总单株数72.21%)携带基因Pm16, 其中有54个单株(占携带该基因单株数的22.59%)表现为中抗至高抗白粉病; 202个单株(占总单株数61.03%)携带基因Yr2, 有34个单株(占携带该基因单株数的16.83%)表现为中抗至高抗条锈病; 246个单株(占总单株数74.32%)携带基因Lr24, 有42个单株(占携带该基因单株数的17.07%)表现为中抗至高抗叶锈病。同时, 有148个单株(占总单株数44.71%)携带基因Pm16和Yr2, 16.22%携带这2个基因的单株表现为抗白粉病和条锈病; 185个单株(占总单株数55.89%)携带基因Pm16和Lr24, 16.76%携带这2个基因的单株表现为抗白粉病和叶锈病; 155个单株(占总单株数46.83%)携带基因Yr2和Lr24, 11.61%携带这2个基因的单株表现为抗叶锈病和条锈病。另外, 119个单株(占总单株数35.95%)携带基因Pm16、Yr2和Lr24, 有13个单株(占携带3个基因单株数的10.92%)表现为抗白粉病、条锈病和叶锈病。

表4 等位基因标记在宁春4号与河东乌麦杂交F2代中的分布及抗病性 Table 4 Distribution and diseases resistance of allele markers in F2 hybrids of Ningchun No.4 × Hedong black wheat

2.3.2 抗病性QTL分析

利用能够在宁春4号与河东乌麦间稳定扩增的49个SSR标记对F2群体进行检测, 结果见图2。其中, 有6个标记对抗病性有明确的QTL定位结果(表5)。利用这6个SSR标记共检测到抗白粉病、条锈病和叶锈病相关的10个QTL, 涉及2A、3B、5B、5D等4条染色体, 对表型贡献率为2%~4%, 加性效应为-0.15~0.08, LOD值最大为10.40。其中, 抗白粉病检测到2个QTL位点, 分布在5A、3B染色体上, 对表型贡献率均为2%, LOD值最大为6.70; 抗条锈病检测到5个QTL位点, 分布在2A、5A、3B、5D染色体上, 对表型贡献率为2%~4%, LOD值最大为10.20; 抗叶锈病检测到3个QTL位点, 分布在5A、3B、5D染色体上, 对表型贡献率为2%~4%, LOD值最大为10.40。同时, 5A、3B染色体上均检测到抗白粉病、条锈病和叶锈病QTL, 5D染色体上检测到抗条锈病、叶锈病QTL, 这3条染色体存在抗病的QTL富集区。

图2 三个分子标记在宁春4号与河东乌麦F2代部分单株中的扩增结果
M, DL 2 000; P1, 宁春4号; P2, 河东乌麦; 1~20, F2单株, 其中, 1~7、13~20为正交, 8~12为反交。
Fig.2 Amplification of 3 molecular markers on partial individual plants in F2 hybrids of Ningchun No.4 × Hedong black wheat
M, DL 2 000; P1, Ningchun No.4; P2, Hedong black wheat; 1-20, F2 individual plants, 1-7 and 13-20 were orthogonal cross, 8-12 were inverse cross.

表5 宁春4号与河东乌麦杂交F2代抗病性QTL定位结果 Table 5 QTL location of disease resistance in F2 hybrids of Ningchun No.4 × Hedong black wheat
3 结论与讨论

世界小麦主产区长期受到各种病害的威胁, 虽然化学防治对小麦病害已取得一定的成效, 但不仅浪费人力、物力和财力, 而且会造成环境污染。因此, 培育和推广抗病品种被公认为是安全、经济、有效的防治方法[42]。抗病基因大部分源于普通小麦, 少部分源于近缘种、属。如抗白粉病基因Pm1(a-d)、Pm4(d-j)、Pm9、Pm10、Pm11、Pm14、Pm15、Pm18、Pm22、Pm23、Pm24、Pm28和Pm29等来源于普通小麦, Pm20来源于栽培黑麦[43], Pm12来源于拟斯卑尔脱山羊草[44], Pm21来源于簇毛麦[45, 46, 47]等。另外, 已明确定位较多地抗小麦锈病基因, 如Sr2、Lr27在3BS上[48], Lr37在7DS上[49], Lr20、Sr15、Sr22在7AL上[50]。抗病基因在不同时期不同程度地提高了小麦的抗病能力, 所以, 抗病品种的培育离不开抗性基因的挖掘[51]。同时, 分子标记作为一种小麦抗病基因检测、发掘、聚合的有效技术被广泛应用, 如:获得含有Lr10+Lr34、Lr24+Lr37+Lr38或Lr24+Lr38基因聚合的中间材料[32]Pm21和Pm13聚合的材料[33], 获得含有Pm8+Pm21、Pm2+Pm4bPm4a+Pm21的抗病材料[44], 将YrSM 139-1BYrSM 139-2D聚合到普通小麦品种陕麦139中[48]。本研究对宁春4号和河东乌麦进行连续2年成株期田间抗病性鉴定, 宁春4号中感白粉病、中感条锈病和叶锈病, 河东乌麦中抗至高抗白粉病、中抗条锈病和叶锈病, 与前期研究结果一致[34, 35]。对F2代331个单株进行抗病性鉴定, 有68个单株抗白粉病、54个抗条锈病、52个抗叶锈病, 其中, 50个表现出同时抗白粉病和条锈病, 44个抗白粉病和叶锈病, 32个抗条锈病和叶锈病, 29个表现出同时抗白粉病、条锈病和叶锈病。抗病性需要在发病充分的条件下, 利用大群体进行多年多点鉴定, 同时要进行单个生理小种鉴定, 才能对资源的抗性和所用生理小种的毒性做出科学、可靠的评价。本研究在相同发病条件下, 利用混合小种对F2群体进行单株鉴定, 能够评价不同单株的抗病性, 该结果具有一定参考依据, 抗病单株也具有一定利用价值。

分别利用基因Pm16、Yr2和Lr24的等位基因标记Xgwm159-5B、WMC364和STS24-16, 在F2代中检测到239个单株携带基因Pm16, 202个单株携带基因Yr2, 246个单株携带基因Lr24, 148个单株携带基因Pm16和Yr2, 185个单株携带基因Pm16和Lr24, 155个单株携带基因Yr2和Lr24, 119个单株携带上述3个基因, 这一结果可为明确不同等位基因在群体中的分布提供理论依据。田间抗病分析发现, 有22.59%携带基因Pm16的单株田间表现中抗至高抗白粉病, 16.83%携带基因Yr2的单株表现中抗至高抗条锈病, 17.07%携带基因Lr24的单株表现为中抗至高抗叶锈病, 16.22%携带基因Pm16和Yr2的单株表现为抗白粉病和条锈病, 16.76%携带基因Pm16和Lr24的单株表现为抗白粉病和叶锈病, 11.61%携带基因Yr2和Lr24的单株表现为抗叶锈病和条锈病, 10.92%携带这3个基因的单株同时表现为抗白粉病、条锈病和叶锈病。利用标记鉴定出携带不同抗性基因的单株中高达77.41%~89.08%表现为感病, 这可能是由于这些基因的抗性降低或丧失, 真正发挥抗病的是其他抗性基因。就这一问题作如下解释:(1)编号为010、065、093、150、152、218、237、240、242、268、275、279、292、311的14份材料表现为抗白粉病, 而标记Xgwm159-5B无扩增结果; (2)编号为010、033、038、150、151、164、196、218、237、241、270、274、276、278、279、290、295、319、322、325的20份材料表现为抗条锈病, 而标记WMC364无扩增结果; (3)编号为020、022、071、088、240、268、270、275、279、299的10份材料表现为抗叶锈病, 而标记STS24-16无扩增结果; (4)编号为010、023、065、150、151、152、164、196、218、237、240、241、242、268、270、274、275、276、278、279、290、292、295、311、319、322、325的27份材料表现为抗白粉病和条锈病, 而标记Xgwm159-5B和WMC364无扩增结果; (5)编号为020、065、071、093、218、240、242、268、270、275、279、292、311的13份材料表现为抗白粉病和叶锈病, 而标记Xgwm159-5B和STS24-16无扩增结果; (6)编号为022、038、071、164、218、240、268、270、275、276、278、279、322、325的14份材料表现为抗条锈病和叶锈病, 而标记WMC364和STS24-16无扩增结果; (7)编号为065、071、164、218、240、242、268、270、275、276、278、279、292、311、322、325的16份材料表现为抗白粉病、条锈病和叶锈病, 而标记Xgwm159-5B、WMC364和STS24-16无扩增结果。

以上结果为进一步利用其他抗病基因标记和找新途径发掘抗病基因提供了启示。同时, 需要选用能在育种上使用的标记作为分子标记辅助选择的功能型标记。随着分子标记研究工作不断深入, 育种家可以利用分子标记发掘抗病QTL, 以培育抗性品种, 虽然小麦抗病性QTL定位研究很多, 但是不同遗传背景下的QTL聚合到同一遗传背景存在诸多困难[52, 53, 54, 55]。本研究利用新开发的6个SSR标记检测到10个QTL位点, LOD值最大为10.40, 涉及2A、3B、5B、5D等4条染色体, 加性效应为-0.15~0.08, 对表型贡献率为2%~4%。5A、3B染色体上均检测到抗白粉病、条锈病和叶锈病QTL, 5D染色体上检测到抗条锈病和叶锈病QTL, 这3条染色体存在QTL富集区, 可作为进一步研究的重点。因所用标记数目有限, 抗白粉病仅检测到2个QTL位点, 抗锈病共检测到8个QTL位点。今后, 需开发高效的分子标记, 通过构建密度较饱和的物理图谱, 使得与抗病性相关的QTL(尤其是主效QTL)得以精细定位, 为小麦抗病性QTL发掘、研究、利用奠定基础。

The authors have declared that no competing interests exist.

参考文献
[1] TANKSLEY S D, MCCOUCH S R. Seed banks and molecular maps: unlocking genetic potential from the wild[J]. Science, 1997, 277(5329): 1063-1066. [本文引用:1]
[2] CHAN S W L. Chromosome engineering: power tools for plant genetics[J]. Trends in Biotechnology, 2010, 28(12): 605-610. [本文引用:1]
[3] 姚占军, 徐世昌, 吴立人. 小麦抗病性遗传的研究进展[J]. 辽宁农业科学, 2002 (6): 30-33.
YAO Z J, XU S C, WU L R. Heredity research progress on disease resistance in wheat[J]. Liaoning Agricultural Science, 2002 (6): 30-33. (in Chinese) [本文引用:1]
[4] 张海泉. 小麦抗白粉病分子育种研究进展[J]. 中国生态农业学报, 2008, 16(4): 1060-1066.
ZHANG H Q. Research advances in molecular breeding of powdery mildew resistance of wheat[J]. Chinese Journal of Eco-Agriculture, 2008, 16(4): 1060-1066. (in Chinese with English abstract) [本文引用:1]
[5] 侍梅, 黄继兵, 顾佩雯, . 宁夏优质春小麦品种(系)白粉病抗性的初步鉴定[J]. 宁夏农林科技, 2015, 56(9): 38-40.
SHI M, HUANG J B, Gu P W, et al. Preliminary identification of powdery mildew resistance of high-quality spring wheat varieties (lines) in Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2015, 56(9): 38-40. (in Chinese) [本文引用:1]
[6] LIPPS P E. Effect of triadimenol seed treatment and triadimefon foliar treatment on powdery mildew epidemics and grain yield of winter wheat cultivars[J]. Plant Disease, 1988, 72(10): 887. [本文引用:1]
[7] 邱永春, 张书绅. 小麦抗白粉病基因及其分子标记研究进展[J]. 麦类作物学报, 2004, 24(2): 127-132.
QIU Y C, ZHANG S S. Researches on powdery mildew resistant genes and their molecular markers in wheat[J]. Acta Tritical Crops, 2004, 24(2): 127-132. (in Chinese with English abstract) [本文引用:1]
[8] 杨美娟, 黄坤艳, 韩庆典. 小麦白粉病及其抗性研究进展[J]. 分子植物育种, 2016, 14(5): 1244-1254.
YANG M J, HUANG K Y, HAN Q D. Research progresses on wheat powdery mildew and its resistance[J]. Molecular Plant Breeding, 2016, 14(5): 1244-1254. (in Chinese with English abstract) [本文引用:1]
[9] ZHANG R Q, SUN B X, CHEN J, et al. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat[J]. Theoretical and Applied Genetics, 2016, 129(10): 1975-1984. [本文引用:1]
[10] LIU W X, KOO D H, XIA Q, et al. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat[J]. Theoretical and Applied Genetics, 2017, 130(4): 841-848. [本文引用:1]
[11] WIERSMA A T, PULMAN J A, BROWN L K, et al. Identification of Pm58 from Aegilops tauschii[J]. Theoretical and Applied Genetics, 2017, 130(6): 1123-1133. [本文引用:1]
[12] GUO J, ZHAO Z, SONG J, et al. Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat: a review[J]. Agricultural Science and Technology, 2017, 18(6): 965-970. [本文引用:1]
[13] HAO M, LIU M, LUO J T, et al. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat[J]. Frontiers in Plant Science, 2018, 9: 1040. [本文引用:1]
[14] TAN C C, LI G Q, COWGER C, et al. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat land race PI 181356[J]. Theoretical and Applied Genetics, 2018, 131(5): 1145-1152. [本文引用:1]
[15] ZOU S H, WANG H, LI Y W, et al. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat[J]. New Phytologist, 2018, 218(1): 298-309. [本文引用:1]
[16] LUKASZEWSKI A J. Frequency of 1RS. 1AL and 1RS. 1BL translocations in United States wheats[J]. Crop Science, 1990, 30(5): 1151-1153. [本文引用:1]
[17] GUPTA R B, SHEPHERD K W. Production of multiple wheat-rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheats using these stocks[J]. Theoretical and Applied Genetics, 1993, 85(6/7): 719-728. [本文引用:1]
[18] MORENO-SEVILLA B, BAENZIGER P S, PETERSON C J, et al. The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross[J]. Crop Science, 1995, 35(4): 1051-1055. [本文引用:1]
[19] CAI X, CHEN P D, XU S S, et al. Utilization of alien genes to enhance Fusarium head blight resistance in wheat: a review[J]. Euphytica, 2005, 142(3): 309-318. [本文引用:1]
[20] 杨厚勇, 李金榜, 徐青, . 小麦锈病的发生规律与防治措施[J]. 农业科技通讯, 2012 (12): 143-144.
YANG H Y, LI J B, XU Q, et al. Ocurrence regularity and control measures of wheat rust[J]. Bulletin of Agricultural Science and Technology, 2012 (12): 143-144. (in Chinese) [本文引用:1]
[21] KNOTT D R. The wheat rusts: breeding for resistance[M]. Heidelberg: Springer, 1989. [本文引用:1]
[22] 白玉路, 章振羽, 徐世昌, . 小麦锈病抗性基因推导研究进展[J]. 植物保护, 2010, 36(4): 36-40, 48.
BAI Y L, ZHANG Z Y, XU S C, et al. Advances in gene postulation in the wheat rust[J]. Plant Protection, 2010, 36(4): 36-40, 48. (in Chinese with English abstract) [本文引用:1]
[23] FENG J Y, WANG M N, SEE D R, et al. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103[J]. Phytopathology, 2018, 108(6): 737-747. [本文引用:1]
[24] NSABIYERA V, BARIANA H S, QURESHI N, et al. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284[J]. Theoretical and Applied Genetics, 2018, 131(7): 1459-1467. [本文引用:1]
[25] MCLNTOSH R A, DUBCOVSKY J, ROGERS W J, et al. Catalogue of gene symbols for wheat: 2010 supplement [M/OL]. (2010-12-10)(2018-08-10). http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2010.pdf. [本文引用:1]
[26] HERRERA-FOESSEL S A, SINGH R P, HUERTA-ESPINO J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat[J]. Theoretical and Applied Genetics, 2012, 124(8): 1475-1486. [本文引用:1]
[27] 殷贵鸿, 王建武, 闻伟锷, . 小麦抗条锈病基因 YrZH84的RGAP标记及其应用[J]. 作物学报, 2009, 35(7): 1274-1281.
YIN G H, WANG J W, WEN W E, et al. Mapping of wheat stripe rust resistance gene YrZH84 with RGAP markers and its application[J]. Acta Agronomica Sinica, 2009, 35(7): 1274-1281. (in Chinese with English abstract) [本文引用:1]
[28] 王玉海, 何方, 鲍印广, . 高抗白粉病小麦-山羊草新种质TA002的创制和遗传研究[J]. 中国农业科学, 2016, 49(3): 418-428.
WANG Y H, HE F, BAO Y G, et al. Development and genetic analysis of a novel wheat-Aegilops germplasm TA002 resistant to powdery mildew[J]. Scientia Agricultura Sinica, 2016, 49(3): 418-428. (in Chinese with English abstract) [本文引用:1]
[29] 刘朝辉, 林志珊, 陈孝, . 小麦新种质YW243抗条锈病基因的染色体定位[J]. 麦类作物学报, 2005, 25(1): 13-16.
LIU Z H, LIN Z S, CHEN X, et al. Chromosome location of stripe rust resistance gene derive from new wheat germplasm YW243[J]. Acta Tritical Crops, 2005, 25(1): 13-16. (in Chinese with English abstract) [本文引用:1]
[30] 赵仁慧, 刘炳亮, 寿路路, . 分子标记辅助聚合抗小麦黄花叶病和白粉病育种[J]. 麦类作物学报, 2017, 37(12): 1541-1549.
ZHAO R H, LIU B L, SHOU L L, et al. Pyramiding disease resistance to wheat yellow mosaic virus and powdery mildew by molecular marker-assisted selection[J]. Journal of Triticeae Crops, 2017, 37(12): 1541-1549. (in Chinese with English abstract) [本文引用:1]
[31] 姚宏鹏, 安哲, 张毓妹, . 小麦抗叶锈病聚合品种中间材料的分子标记辅助选择[J]. 分子植物育种, 2015, 13(11): 2421-2428.
YAO H P, AN Z, ZHANG Y M, et al. Marker-assisted selection of wheat leaf rust resistance genes in the pyramiding middle materials of wheat[J]. Molecular Plant Breeding, 2015, 13(11): 2421-2428. (in Chinese with English abstract) [本文引用:1]
[32] 董娜, 张亚娟, 张军刚, . 分子标记辅助小麦抗白粉病基因 Pm21和 PM13聚合育种[J]. 麦类作物学报, 2014, 34(12): 1639-1644.
DONG N, ZHANG Y J, ZHANG J G, et al. Molecular marker assisted pyramid breeding of powdery mildew resistance gene Pm21 and Pm13[J]. Journal of Triticeae Crops, 2014, 34(12): 1639-1644. (in Chinese with English abstract) [本文引用:2]
[33] 曾祥艳, 张增艳, 杜丽璞, . 分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质[J]. 中国农业科学, 2005, 38(12): 2380-2386.
ZENG X Y, ZHANG Z Y, DU L P, et al. Development of wheat germplasms with multi-resistance to powdery mildew, stripe rust and yellow dwarf virus by molecular marker-assisted selection[J]. Scientia Agricultura Sinica, 2005, 38(12): 2380-2386. (in Chinese with English abstract) [本文引用:2]
[34] 王掌军, 刘妍, 王姣, . 小麦种质资源农艺性状遗传分析及白粉病抗性鉴定[J]. 西南农业学报, 2018, 31(7): 1338-1348.
WANG Z J, LIU Y, WANG J, et al. Genetic analysis on agronomic traits and identification of powdery mildew resistance of wheat germplasm resources[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1338-1348. (in Chinese with English abstract) [本文引用:2]
[35] 刘妍, 田蓉蓉, 王天佑, . 2个小麦品种的遗传性状分析及分子标记筛选[J]. 河南农业科学, 2017, 46(10): 13-20.
LIU Y, TIAN R R, WANG T Y, et al. Analysis of genetic traits and screening of molecular marker in two wheat varieties[J]. Journal of Henan Agricultural Sciences, 2017, 46(10): 13-20. (in Chinese with English abstract) [本文引用:3]
[36] 盛宝钦, 段霞瑜. 对记载小麦成株白粉病“0—9级法”的改进[J]. 北京农业科学, 1991(1): 38-39.
SHENG B Q, DUAN X Y. Improvement of recording wheat powdery mildew ‘0-9’process at adult stage[J]. Beijing Agricultural Sciences, 1991(1): 38-39. (in Chinese ) [本文引用:1]
[37] 李复宁. 小麦条锈病严重度分级标准的研究简报[J]. 植物保护, 1991, 17(2): 30.
LI F N. Brief report on the classification criteria of wheat stripe rust severity[J]. Plant Protection, 1991, 17(2): 30. (in Chinese) [本文引用:1]
[38] CHEN X M, LUO Y H, XIA X C, et al. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis[J]. Plant Breeding, 2005, 124(3): 225-228. [本文引用:1]
[39] 林凤, 徐世昌, 张立军, . 小麦抗条锈病基因 Yr2的SSR标记[J]. 麦类作物学报, 2005, 25(1): 17-19.
LIN F, XU S C, ZHANG L J, et al. SSR marker of wheat stripe rust resistance gene Yr2[J]. Acta Tritical Crops, 2005, 25(1): 17-19. (in Chinese with English abstract) [本文引用:1]
[40] YANG Z J, LI G R, CHANG Z J, et al. Characterization of a partial amphiploid between Triticum aestivum cv Chinese Spring and Thinopyrum intermedium ssp. Trichophorum[J]. Euphytica, 2006, 149(1/2): 11-17. [本文引用:1]
[41] 张娜, 陈玉婷, 李亚宁, . 小麦抗叶锈病基因 Lr24的一个新STS标记[J]. 作物学报, 2008, 34(2): 212-216.
ZHANG N, CHEN Y T, LI Y N, et al. A novel STS marker for leaf rust resistance gene Lr24 in wheat[J]. Acta Agronomica Sinica, 2008, 34(2): 212-216. (in Chinese with English abstract) [本文引用:1]
[42] 高安礼, 何华纲, 陈全战, . 分子标记辅助选择小麦抗白粉病基因 Pm2、 Pm4 a Pm21的聚合体[J]. 作物学报, 2005, 31(11): 1400-1405.
GAO A L, HE H G, CHEN Q Z, et al. Pyramiding wheat powdery mildew resistance genes Pm2, Pm4a and Pm21 by molecular marker-assisted selection[J]. Acta Agronomica Sinica, 2005, 31(11): 1400-1405. (in Chinese with English abstract) [本文引用:1]
[43] FRIEBE B, GILL B S, TULEEN N A, et al. Registration of KS93WGRC28 powdery mildew resistant T6BS-6RL wheat germplasm[J]. Crop Science, 1995, 35(4): 1237. [本文引用:1]
[44] JIA J, DEVOS K M, CHAO S, et al. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of PM12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J]. Theoretical and Applied Genetics, 1996, 92(5): 559-565. [本文引用:2]
[45] CHEN P D, QI L L, ZHOU B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theoretical and Applied Genetics, 1995, 91(6/7): 1125-1128. [本文引用:1]
[46] CAO A, XING L, WANG X, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat[J]. Proceedings of the National Academy of Sciences, 2011, 108(19): 7727-7732. [本文引用:1]
[47] XIE W L, BEN-DAVID R, ZENG B, et al. Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat[J]. Molecular Breeding, 2012, 29(2): 399-412. [本文引用:1]
[48] MAGO R, BROWN-GUEDIRA G, DREISIGACKER S, et al. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat[J]. Theoretical and Applied Genetics, 2011, 122(4): 735-744. [本文引用:2]
[49] KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323(5919): 1360-1363. [本文引用:1]
[50] JI X L, XIE C J, NI Z F, et al. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer ( Triticum dicoccoides) accession IW72 from Israel[J]. Euphytica, 2008, 159(3): 385-390. [本文引用:1]
[51] 刘成, 闫红飞, 宫文萍, . 小麦叶锈病新抗源筛选[J]. 植物遗传资源学报, 2013, 14(5): 936-944.
LIU C, YAN H F, GONG W P, et al. Screening of new resistance sources of wheat leaf rust[J]. Journal of Plant Genetic Resources, 2013, 14(5): 936-944. (in Chinese with English abstract) [本文引用:1]
[52] SINGH R P, HUERTA-ESPINO J, BHAVANI S, et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats[J]. Euphytica, 2011, 179(1): 175-186. [本文引用:1]
[53] SINGH R P, HUERTA-ESPINO J, RAJARAM S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes[J]. Acta Phytopathologica et Entomologica Hungarica, 2000, 35(1): 133-139. [本文引用:1]
[54] CASTRO A J, CHEN X M, HAYES P M, et al. Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust[J]. Crop Science, 2003, 43(2): 651. [本文引用:1]
[55] DEKKERS J C M, HOSPITAL F. The use of molecular genetics in the improvement of agricultural populations[J]. Nature Reviews Genetics, 2002, 3(1): 22-32. [本文引用:1]