饲料磷真消化率不同的山羊空肠菌群结构差异研究
金磊, 王立志*, 王之盛, 薛白, 彭全辉
四川农业大学 动物营养研究所,四川 成都 611130
*通信作者,王立志,E-mail: wanglizhi08@aliyun.com

作者简介:金磊(1992—),男,陕西西安人,硕士研究生,研究方向为反刍动物营养。E-mail: 1587870877@qq.com

摘要

动物对饲料磷消化率的提高对于降低养殖成本和减少环境污染均具有重要意义。通过高通量测序技术比较饲料磷真消化率不同的山羊空肠微生物结构的差异。本研究选取24只10月龄,雌性,平均体质量(24.25±2.47)kg的努比亚黑山羊作为试验动物,通过代谢试验筛选出高(HP)、低(LP)饲料磷真消化率组,每组各6只。分别采集HP、LP组山羊空肠内容物,提取微生物总DNA,利用高通量测序平台对细菌16S rRNA基因的高可变区进行测序,使用QIIME等软件对测序数据进行生物信息学分析。研究表明,在门水平,厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)在两组山羊空肠微生物中均为优势菌门,其中HP组厚壁菌门(Firmicutes)的相对丰度极显著低于LP组( P<0.01),而拟杆菌门(Bacteroidetes)的相对丰度极显著高于LP组( P<0.01);在属水平上,HP组 Prevotella Fibrobacter Ruminococcus_2和 Clostridium_sensu_stricto_1的相对丰度显著高于LP组( P<0.05),而 Desulfovibrio Victivallis的相对丰度显著低于LP组( P<0.05)。饲料磷真消化率不同的山羊空肠菌群结构存在显著差异。

关键词: 山羊; 磷真消化率; 空肠; 微生物
中图分类号:S827.5 文献标志码:A 文章编号:1004-1524(2019)07-1057-09
Differences in jejunum microbes of goats with different phosphorus true digestibility
JIN Lei, WANG Lizhi*, WANG Zhisheng, XUE Bai, PENG Quanhui
Animal Nutrition Institute, Sichuan Agricultural University, Chengdou 611130, China
Abstract

Improving animal digestion and utilization efficiency of phosphorus were of great significance for reducing animal breeding costs and environmental pollution. The objective of this study was to compare the structure of jejunum microorganism of goats with different true digestibility of feed phosphorus using Illumina MiSeq sequencing technology. Twenty-four Nubian black goats, aged 10 months on average and weighed (24.25±2.47)kg, were selected as the experimental animals. The contents of jejunum of each goat in the HP and LP groups were collected and total genomic DNA was extracted, and the high variable region of 16S rRNA gene of bacteria was sequenced by high throughput sequencing platform. Bioinformatics analysis of sequencing data was carried out using QIIME software. At the phylum level, Firmicutes and Bacteroidetes were the dominant bacteria of the jejunum microbiota in goats, and the relative abundance of Firmicutes in HP group was extremely significantly lower than that in the LP group ( P<0.01), while the relative abundance of Bacteroidetes was extremely significantly higher than that in the LP group( P<0.01). At the genus level, the relative abundances of Prevotella, Rikenellaceae_RC9_gut_group, Fibrobacter, Ruminococcus_2 and Clostridium_sensu_stricto_1 in HP group were significantly higher than that in the LP group ( P<0.05), and the relative abundances of Desulfovibrio and Victivallis were significantly lower than that in LP group( P<0.05). There were significant differences in structure of jejunum microorganisms among goats with different true digestibility of feed phosphorus.

Keyword: goat; true digestibility of phosphorus; jejunum; microorganism

磷是动物体内一种重要的常量矿物元素[1, 2, 3], 饲料中未被动物胃肠道消化吸收的磷, 通过粪便排放到体外后, 会造成严重的环境污染[4, 5]。因此, 提高动物对磷的消化利用效率对于降低动物养殖成本和减少环境污染均具有极其重要的意义。反刍动物饲料中的磷主要在小肠中进行消化吸收[6, 7], 小肠微生物可能是影响其对饲料磷消化吸收的一个重要因素[8, 9, 10]。已有关于山羊胃肠道微生物多样性的报道[11, 12], 但磷消化率不同的山羊小肠微生物的结构与组成是否具有差异仍未知。明晰饲料中磷消化率是否受到小肠微生物多样性的影响, 将有助于提高饲料磷利用率相关技术的研发。另外, 由于消化道内源磷的存在, 采用表观消化率并不能准确衡量动物对磷的消化吸收情况[13, 14]。与表观消化率相比, 真消化率才能真实且准确地反映出宿主对磷的生物学利用效率[15, 16, 17]。本研究采用16S rRNA高通量测序技术比较饲料磷真消化率不同的山羊空肠微生物组成的差异性, 旨在促进人们更清晰地认识空肠微生物与宿主饲料磷真消化率之间的关系, 增进对空肠微生物与宿主磷消化利用关系的理解。

1 材料与方法
1.1 试验动物与饲养管理

选取24只10月龄, 雌性, 平均体质量(24.25± 2.47)kg的努比亚黑山羊, 试验在四川农业大学动物营养研究所实验基地进行, 整个试验期试羊单笼饲养, 每日饲料(干物质)按体质量3.5%供给, 自由饮水。参照我国《肉羊饲养标准》(NY/T 816— 2004), 以每天每头增重0.1 kg为标准配制日粮, 日粮配方和营养水平详见表1

表1 日粮组成及营养水平(干物质基础) Table 1 The composition and nutrient level of the diet (dry matter basis) %
1.2 试验设计与样品采集

整个试验由2期(Ⅰ 期和Ⅱ 期)构成, 每期包括14 d预饲期和6 d代谢试验期, 共40 d。代谢试验期内, 每天记录每只山羊的饲料供给量和残留量, 并采集当天饲喂的饲料及剩料样品, 于-20 ℃保存备用。采用全收粪法收集代谢试验期内山羊粪便, 取粪总量的10%, 用10%盐酸固氮后于-20 ℃贮存备用。Ⅰ 期和Ⅱ 期分别饲喂对应日粮, 试验第41天晨饲前, 屠宰所有山羊, 迅速分割出空肠并进行结扎, 以防止相邻肠断的内容物流入空肠。无菌采集空肠内容物样品于冻存管中, -80 ℃保存备用。

根据山羊饲料采食量, 饲料和粪便样品中的磷含量等数据, 计算出24个山羊个体有机磷的真消化率:

磷真消化率(%)=[(Ⅱ 期食入磷-Ⅰ 期食入磷)-(Ⅱ 期排泄磷-Ⅰ 期排泄磷)]÷ (Ⅱ 期食入磷-Ⅰ 期食入磷)× 100%[18]

统计24只山羊对饲料磷真消化率的平均值及标准差, 将磷真消化率大于(群体平均值+0.5倍标准差)的山羊作为高磷真消化率组(high true digestibility of phosphorus, HP), 磷真消化率小于(群体平均值-0.5倍标准差)的山羊作为低磷真消化率组(low true digestibility of phosphorus, LP)。

1.3 DNA提取和PCR扩增

提取HP组和LP组空肠内容物微生物总DNA, DNA的提取和纯化参照文献[19]方法进行[19]。用细菌通用引物对:515F(5'-GTGCCAGCMGCCGCGGTAA-3')和806R(5'-GGACTACVSGGGTATCTAAT-3'), 以空肠内容物菌群总DNA为模板, 针对细菌16S rRNA基因的V4区用PCR仪进行扩增。PCR反应体系为:5 U· μ L-1Taq酶0.25 μ L, 10× Buffer 5.0 μ L, 10 mmol· L-1 dNTPs 1.0 μ L, 10 μ mol· L-1引物各1.25 μ L, 50 ng· μ L-1 DNA模板1.0 μ L, 补ddH2O至50 μ L。扩增反应条件为:95 ℃ 2 min; 95 ℃ 30 s, 55 ℃ 30 s, 72 ℃ 30 s, 循环30次; 72 ℃ 5 min。PCR产物用含溴化乙锭的2%琼脂糖凝胶电泳鉴定并用PCR纯化试剂盒纯化和回收。回收的PCR产物用QuantiFluorTM-ST fluorometer定量, 送北京诺禾致源生物技术有限公司构建文库, 利用Illumina MiSeq测序平台进行高通量测序。

1.4 生物信息学分析

测序平台得到的原始数据经过质控、拼接、Tags过滤和去除剔除嵌合体[20, 21, 22, 23]后, 使用Uclust[24]聚类算法将序列聚类为OTU(operational taxonomic units), 并使用RDF分类器[25]对OTU代表序列从门到属进行物种注释。基于OTU table和rep_set. tree文件及抽样的最大深度, 绘制OTU稀释曲线并计算α 多样性指数。结合各个样品的OTU种类及其丰度进行计算, 获得样品间Unweighted unifrac距离矩阵, 并利用加权组平均法(UPGMA)进行聚类分析, 然后绘制PCoA聚类图[26, 27]。根据门和属水平上物种的结构和组成, 用OriginPro 9.0和R x64 3.0.2软件绘制优势菌门柱形图和共享属聚类热图。基于16s rRNA扩增子测序结果, 用PICRUSt(phylogenetic investigation of communities by reconstruction of unobserved states), 通过比对KEGG(kyoto encyclopedia of genes and genomes, http://www.genome.jpkegg)数据库, 对空肠微生物的基因进行功能预测, 并挑选主要功能通路进行组间差异性分析[28, 29]

1.5 数据分析

采用SPSS 18.0统计软件, 对LP组和HP组之间细菌的相对丰度进行非参数检验, 将P< 0.05视为差异显著, P< 0.01为差异极显著。对组间差异显著的微生物, 用其相对丰度与宿主对饲料磷的真消化率进行相关性(Spearman)分析。

2 结果与分析
2.1 山羊有机磷真消化率

如图1所示, 24只山羊对日粮有机磷真消化率的平均值为(78.61± 7.65)%, 变异系数为9.73%。HP和LP组各挑选6只山羊, 饲料有机磷的真消化率平均值分别为(89.20± 0.01)%和(68.95± 0.05)%, HP组山羊饲料有机磷真消化率极显著高于LP组(P< 0.01)。

图1 磷真消化率
2.2 空肠内容物16S rRNA基因的高通量测序和OUT统计
Fig.1 True digestibility of phosphorus

对12个样本进行测序, 共获得900 688条有效序列。基于相似性大于97%的原则, 将获得的有效序列进行聚类, 共获得5 611个OTU。其中HP组有3 830个OTU, 平均每个样品含(2 313± 179)个OTU; LP组有3 977个OTU, 平均每个样品含(2 085± 271)个OTU; 两组间共享的OTU有2 196个(图2)。

图2 OTU维恩图Fig.2 OTU venn diagram

各样品稀释曲线如图3所示。在本试验的测序深度下, 各条曲线最终均趋于平缓, 说明试验的测序量足以覆盖各样品的绝大多数微生物。

图3 各样品的稀释曲线
2.3 山羊空肠微生物的α 多样性分析
Fig.3 Rarefaction curves of each sample

α 多样性指数主要用于评价样品中微生物的丰富性和均匀性。表2列出了HP组和LP组样品的Shannon、Chao1、Goods coverage和PD_whole_tree指数。在同一测序深度下, HP组的α 多样性指数均大于LP组, 但仅Chao1指数在组间具有显著差异(P< 0.05)。

表2 组间α 多样性指数的差异性比较 Table 2 Comparison of α diversity index between the two groups
2.4 山羊空肠微生物门水平和属水平上的微生物组成

将所得有效序列在不同分类水平上进行物种注释和统计, 将相对丰度大于0.1%的微生物视为优势菌群。HP和LP组均有8个优势菌门, 2个组相对丰度排名前10的门均依次分别为厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、黏胶球形菌门(Lentisphaerae)、螺旋体门(Spirochaetes)、软壁菌门(Tenericutes)、放线菌门(Actinobacteria)、螺旋体菌门(Saccharibacteria)、疣微菌门(Verrucomicrobia)和绿弯菌门(Chloroflexi)(图4)。厚壁菌门(Firmicutes)在HP和LP组的相对丰度分别达到了59.75%和70.69%, 处于绝对优势地位。对HP和LP组的优势菌门进行组间差异分析(表3), HP组厚壁菌门(Firmicutes)的相对丰度极显著低于LP组(P< 0.01), 拟杆菌门(Bacteroidetes)极显著高于LP组(P< 0.01)。

图4 门水平上的菌群组成Fig.4 Composition of microorganism at phylum level

表3 HP和LP组在门和属水平上差异的菌群及其与磷真消化率的相关性 Table 3 The difference between HP and LP groups at the level of portal and genera and their correlation with true phosphorus digestibility

在属水平上, 2个组相对丰度大于0.1%的微生物属共有47个(图5)。对HP和LP组的优势菌属进行组间差异性分析, 其中有显著性差异的菌属如表3所示, HP组PrevotellaRikenellaceae_RC9_gut_groupFibrobacterRuminococcus_2和Clostridium_sensu_stricto_1的相对丰度显著高于LP组(P< 0.05), 而DesulfovibrioVictivallis的相对丰度显著低于LP组(P< 0.05)。

图5 共享菌群在属水平上的聚类热图Fig.5 Log-scaled percentage heatmap of bacteria community structure at the shared-genus level

表3所示, 在门水平, 宿主的磷真消化率与拟杆菌门(Bacteroidetes)的相对丰度极显著正相关(P< 0.01), 与厚壁菌门(Firmicutes)的相对丰度极显著负相关(P< 0.01)。在属水平, 山羊磷真消化率与PrevotellaFibrobacterVictivallis的相对丰度显著正相关(P< 0.05), 与DesulfovibrioRuminococcus_2的相对丰度极显著正相关(P< 0.01), 与Clostridium_sensu_stricto_1的相对丰度极显著负相关(P< 0.01)。

2.5 PICRUSt基因预测

基于本试验16s rRNA扩增子的测序结果, 用PICRUSt对空肠微生物的基因进行功能预测, 2个组共预测到了35个功能基因。图6展示了相对丰度处于前20位的功能基因, 这20种功能基因分别占HP组和LP组总基因丰度的93.49%和94.08%。图6由下到上基因的相对丰度逐步降低, 相对丰度最高的基因其功能依次为膜转运、碳水化合物代谢、氨基酸代谢、能量代谢、辅助因子和维生素代谢、脂质代谢等。这20种功能基因, 其相对丰度在组间的差异均不显著(P> 0.05)。

3 讨论

本试验采用限饲, 磷的供给量低于肉羊饲养标准, 满足采用差量法测定饲料磷真消化率的条件。本研究测定的山羊对饲料磷的真消化率平均

图6 20种优势功能基因的相对丰度组成Fig.6 The composition of the relative abundance contributed by the top 20 genes

值为78.61%, 略高于单胃动物猪[30]和鸡[31]。分析原因, 可能是由于反刍动物胃肠道具有更丰富的胃肠道微生物, 微生物可能会显著影响宿主对饲料中磷的消化吸收。动物对日粮中磷消化的影响因素主要包括日粮磷的来源、磷的水平、钙磷比和日粮植酸的水平等[32, 33, 34, 35]。一般日粮中磷含量越高, 无机磷的含量越低, 动物对磷的消化利用效率越低[36]。但本试验结果发现, 饲喂相同饲粮且遗传背景相同的山羊, 饲料磷的真消化率也存在显著的个体差异。

学者们普遍认为小肠是磷消化吸收的主要场所, 但有关宿主对饲料磷的消化吸收与小肠中微生物的相关性研究还未见报道。本研究采用高通量测序技术探索宿主磷真消化率与空肠微生物组成关系, 较全面地覆盖了研究对象的空肠微生物, 能真实全面地反映其微生物组成情况。研究结果发现, HP组α 多样性指数中的Chao1指数显著高于LP组, 暗示HP组微生物的丰富度或者是均匀度高于LP组; 但是HP组和LP组之间OTU数并无显著差异, 表明2组的微生物丰富度并无显著性差异。综合OTU数和Chao1指数的分析结果可以得出, HP组在空肠微生物的均匀度上要显著高于LP组, PCoA聚类图也直观地证明了这一点。

在本研究中, HP组和LP组空肠微生物相对丰度最高的门均是厚壁菌门(Firmicutes), 肉牛和奶牛上的研究都表明[37, 38], 厚壁菌门(Firmicutes)在空肠微生物中处于绝对优势地位, 这可能与反刍动物日粮中粗饲料含量较高有关, 有研究表明, 胃肠道中厚壁菌门(Firmicutes)的比例与日粮中粗饲料的含量呈显著正相关[39]。在门和属水平上, HP和LP组之间均存在差异显著的菌群, 并且这些差异菌群与宿主对饲料磷的真消化率之间存在显著的相关性, 说明空肠微生物的结构会显著影响山羊对饲料磷的消化吸收。在本研究中, HP组Bacteroidetes属的相对丰度极显著高于LP组, 同时隶属于Bacteroidetes门的Prevotella属和Rikenellaceae_RC9_gut_group属的相对丰度也显著高于LP组, 并且三者的相对丰度均与磷真消化率之间呈显著的正相关。这些结果表明, 空肠中的Bacteroidetes门菌群可能有助于宿主对饲料磷的消化吸收。尤其值得注意的是Bacteroidetes门的Prevotella属, 其所能消化分解的底物非常广泛, 例如隶属于Prevotella属的短普雷沃氏菌, 不但具有很高的蛋白酶活性, 还能发酵葡萄糖、乳糖和纤维二糖; 栖瘤胃普雷沃氏菌和布氏普雷沃氏菌, 能分泌木聚糖酶和羧甲基纤维素酶以降解淀粉、木聚糖等营养物质[40]。因此, 普雷沃氏菌属几乎可以单独完成蛋白质、糖类和碳水化合物等营养物质的降解任务。本研究中, Prevotella属菌群可能也参与了饲料中植酸磷的分解, 使得植物性饲料中所含的原本不能被宿主利用的磷被释放出来, 从而被山羊消化吸收。已有研究表明, Prevotella属菌群能分泌微生物植酸酶催化植酸的水解, 释放饲料中的植酸磷, 提高宿主对饲料植物磷的消化率[41]

以有研究表明, FibrobacterRuminococcus_2均是动物胃肠道中重要的纤维分解菌。Fibrobacter能产生多糖酶, 这些酶能够降解日粮中的多种纤维类物质[42, 43, 44]。隶属于Ruminococcus属的白色瘤胃球菌和黄色瘤胃球菌都是主要的纤维分解菌种, 在纤维素和半纤维素的降解中发挥着重要作用。HP组的FibrobacterRuminococcus_2的相对丰度显著高于LP组, 且相对丰度都与山羊对饲料磷的消化率显著正相关。产生这种现象的原因可能是饲料纤维结构的破坏促进了饲料中被束缚的磷的释放, 纤维物质的降解发酵可以提高饲料磷的消化吸收率[45]

目前为止, 人们对肠道微生物在宿主营养物质消化代谢的过程中发挥的作用认知十分有限。通过PICRUSt基因预测, 空肠微生物最主要的功能类别为代谢功能类, 如能量代谢、糖酵解途径、碳水化合物代谢、脂肪代谢和氨基酸代谢等, 这与前人的研究结果一致[46, 47]。必须指出的是, 虽然本研究表明, 空肠微生物与宿主对饲料磷的真消化率存在显著的相关性, 但目前尚缺乏直接的证据证明微生物的差异直接影响了山羊对饲料磷的消化吸收。但不可否认的是, 本研究首次发现了空肠微生物的组成与山羊磷的真消化率存在关联性, 这为今后研究调控微生物以促进磷的消化利用提供了崭新的思路。

参考文献
[1] SUTTLE N, SUTTLE N. Mineral nutrition of livestock[J]. Cabi Bookshop, 2009, 215(6): 1-8. [本文引用:1]
[2] LEI X G, STAHL C H. Nutritional benefits of phytase and dietary determinants of its efficacy[J]. Journal of Applied Animal Research, 2000, 17(1): 97-112. [本文引用:1]
[3] NOVAK J M, WATTS D W, HUNT P G, et al. Phosphorus movement through a coastal plain soil after a decade of intensive swine manure application[J]. Journal of Environment Quality, 2000, 29(4): 1310-1315. [本文引用:1]
[4] TILMAN D. Forecasting agriculturally driven global environmental change[J]. Science, 2001, 292(5515): 281-284. [本文引用:1]
[5] KEBREAB E, HANSEN A V, STRATHE A B. Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock[J]. Current Opinion in Biotechnology, 2012, 23(6): 872-877. [本文引用:1]
[6] BREVES G, SCHRÖDER B. Comparative aspects of gastrointestinal phosphorus metabolism[J]. Nutrition Research Reviews, 1991, 4(1): 125-140. [本文引用:1]
[7] SHEN Y R, FAN M Z, AJAKAIYE A, et al. Use of the regression analysis technique to determine the true phosphorus digestibility and the endogenous phosphorus output associated with corn in growing pigs[J]. The Journal of Nutrition, 2002, 132(6): 1199-1206. [本文引用:1]
[8] DILGER R N, ADEOLA O. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals[J]. Poultry Science, 2006, 85(4): 661-668. [本文引用:1]
[9] SCHRÖDER B, BREVES G. Mechanisms and regulation of calcium absorption from the gastrointestinal tract in pigs and ruminants: comparative aspects with special emphasis on hypocalcemia in dairy cows[J]. Animal Health Research Reviews, 2006, 7(1/2): 31-41. [本文引用:1]
[10] LEYTEM A B, THACKER P A. Phosphorus utilization and characterization of excreta from swine fed diets containing a variety of cereal grains balanced for total phosphorus[J]. Journal of Animal Science, 2010, 88(5): 1860-1867. [本文引用:1]
[11] YANG S L, MA S C, CHEN J, et al. Bacterial diversity in the rumen of Gayals ( Bos frontalis), Swamp buffaloes ( Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences[J]. Molecular Biology Reports, 2010, 37(4): 2063-2073. [本文引用:1]
[12] JAMI E, MIZRAHI I. Similarity of the ruminal bacteria across individual lactating cows[J]. Anaerobe, 2012, 18(3): 338-343. [本文引用:1]
[13] MESCHY F. Recent progress in the assessment of mineral requirements of goats[J]. Livestock Production Science, 2000, 64(1): 9-14. [本文引用:1]
[14] BRAVO D, SAUVANT D, BOGAERT C, et al. III. Quantitative aspects of phosphorus excretion in ruminants[J]. Reproduction Nutrition Development, 2003, 43(3): 285-300. [本文引用:1]
[15] PETERSEN G I, STEIN H H. Novel procedure for estimating endogenous losses and measurement of apparent and true digestibility of phosphorus by growing pigs[J]. Journal of Animal Science, 2006, 84(8): 2126-2132. [本文引用:1]
[16] FAN M Z, ARCHBOLD T, SAUER W C, et al. Novel methodology allows simultaneous measurement of true phosphorus digestibility and the gastrointestinal endogenous phosphorus outputs in studies with pigs[J]. The Journal of Nutrition, 2001, 131(9): 2388-2396. [本文引用:1]
[17] AKINMUSIRE A S, ADEOLA O. True digestibility of phosphorus in canola and soybean meals for growing pigs: Influence of microbial phytase[J]. Journal of Animal Science, 2009, 87(3): 977-983. [本文引用:1]
[18] AMMERMAN C B, FORBES R M, GARRIGUS U S, et al. Ruminant utilization of inorganic phosphates[J]. Journal of Animal Science, 1957, 16(4): 796-810. [本文引用:1]
[19] GUO W, LI Y, WANG L Z, et al. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology[J]. Anaerobe, 2015, 34: 74-79. [本文引用:2]
[20] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. [本文引用:1]
[21] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. [本文引用:1]
[22] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. [本文引用:1]
[23] HUSE S M, WELCH D M, MORRISON H G, et al. Ironing out the wrinkles in the rare biosphere through improved OTU clustering[J]. Environmental Microbiology, 2010, 12(7): 1889-1898. [本文引用:1]
[24] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. [本文引用:1]
[25] COLE J R, WANG Q, CARDENAS E, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research, 2009, 37(S1): 141-145. [本文引用:1]
[26] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2012, 41(D1): 590-596. [本文引用:1]
[27] LOZUPONE C, LLADSER M E, KNIGHTS D, et al. UniFrac: an effective distance metric for microbial community comparison[J]. The ISME Journal, 2011, 5(2): 169-172. [本文引用:1]
[28] LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. [本文引用:1]
[29] FU L L, JIANG B H, LIU J L, et al. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis[J]. Biotechnology Letters, 2016, 38(3): 447-453. [本文引用:1]
[30] LIU ZHENGQUN, ZHANG ZUXIANG, ZHANG ZUXIANG, et al. Effects of basal diet composition on true total tract digestibility of phosphorus in dicalcium phosphate and monocalcium phosphate for growing pigs[J]. Chinese Journal of Animal Nutrition, 2016, 28(8): 2542-2550. [本文引用:1]
[31] ABBASI F, LIU J B, ZHANG H F, et al. Effects of dietary total phosphorus concentration and casein supplementation on the determination of true phosphorus digestibility for broiler chickens[J]. Italian Journal of Animal Science, 2018, 17(1): 135-144. [本文引用:1]
[32] LIU J, BOLLINGER W, LEDOUX R, et al. Effects of dietary calcium: phosphorus ratios on apparent absorption of calcium and phosphorus in the small intestine, cecum, and colon of pigs[J]. Journal of Animal Science, 2000, 78(1): 106-109. [本文引用:1]
[33] JOHNSTON S L, WILLIAMS S B, SOUTHERN L L, et al. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total-tract nutrient digestibility in pigs[J]. Journal of Animal Science, 2004, 82(3): 705-714. [本文引用:1]
[34] SELLE P H, COWIESON A J, RAVINDRAN V. Consequences of calcium interactions with phytate and phytase for poultry and pigs[J]. Livestock Science, 2009, 124(1/2/3): 126-141. [本文引用:1]
[35] MUTUCUMARANA R K, RAVINDRAN V, RAVINDRAN G, et al. Measurement of true ileal phosphorus digestibility in maize and soybean meal for broiler chickens: comparison of two methodologies[J]. Animal Feed Science and Technology, 2015, 206: 76-86 [本文引用:1]
[36] EKELUND A, SPÖRNDLY R, VALK H, et al. Effects of varying monosodium phosphate intake on phosphorus excretion in dairy cows[J]. Livestock Production Science, 2005, 96(2/3): 301-306. [本文引用:1]
[37] DE OLIVEIRA M N V, JEWELL K A, FREITAS F S, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer[J]. Veterinary Microbiology, 2013, 164(3/4): 307-314. [本文引用:1]
[38] MAO S Y, ZHANG M L, LIU J H, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function[J]. Scientific Reports, 2015, 5: 16116. [本文引用:1]
[39] CHEN Y H, PENNER G B, LI M J, et al. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet[J]. Applied and Environmental Microbiology, 2011, 77(16): 5770-5781. [本文引用:1]
[40] PURUSHE J, FOUTS D E, MORRISON M, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche[J]. Microbial Ecology, 2010, 60(4): 721-729. [本文引用:1]
[41] YANKE L J, BAE H D, SELINGER L B, et al. Phytase activity of anaerobic ruminal bacteria[J]. Microbiology, 1998, 144(6): 1565-1573. [本文引用:1]
[42] WOOD T M, WILSON C A, STEWART C S. Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall[J]. Biochemical Journal, 1982, 205(1): 129-137. [本文引用:1]
[43] DOERNER K C, WHITE B A. Assessment of the endo-1, 4-beta-glucanase components of Ruminococcus flavefaciens FD-1[J]. Applied and Environmental Microbiology, 1990, 56(6): 1844-1850. [本文引用:1]
[44] STEVENSON D M, WEIMER P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR[J]. Applied Microbiology and Biotechnology, 2007, 75(1): 165-174. [本文引用:1]
[45] SIMPSON H L, CAMPBELL B J. Review article: dietary fibre-microbiota interactions[J]. Alimentary Pharmacology & Therapeutics, 2015, 42(2): 158-179. [本文引用:1]
[46] LU K, ABO R P, SCHLIEPER K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3): 284-291. [本文引用:1]
[47] VANESSA K. RIDAURA, JEREMIAH J. FAITH, FEDERICO E. REY, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150): 1079. [本文引用:1]