转录因子在植物生长发育及非生物逆境响应的作用
刘慧洁1,2, 徐恒2, 邱文怡1,2, 李晓芳2,3, 张华2, 朱英2, 李春寿4, 王良超2,*
1.浙江师范大学 化学与生命科学学院,浙江 金华321004
2.浙江省农业科学院 病毒学与生物技术研究所,浙江省有害生物防控国家重点实验室培育基地,浙江 杭州310021
3.河北师范大学 生命科学学院,河北 石家庄050000
4.浙江省农业科学院 作物与核技术利用研究所,浙江 杭州 310021
*通信作者,王良超,E-mail: wlc_zju@sina.combZIP

作者简介:刘慧洁(1993—),女,陕西榆林人,硕士研究生,主要从事植物抗病性和稻米品质研究。E-mail: 784937832@qq.com

摘要

在植物的一生中,不同的基因被设定在不同的时期及部位精确地表达,或是在不同的环境条件下如高温、干旱等诱导表达,基因表达受转录因子的精确调控。植物碱性亮氨酸拉链(basic leucine zipper,bZIP)蛋白是一类重要的转录因子,其参与了植物从生长发育到胁迫响应的各种过程。植物生长转变及对胁迫做出响应会迅速地诱发自身大量基因的转录变化,这一过程称为转录重编程。bZIP转录因子就是引导这些转录重编程的转录因子中重要的一类。本文介绍了bZIP转录因子的结构、分类以及重要功能,综述了其在植物生长发育及非生物胁迫响应等过程中所起的关键作用,并就如何拓展完善bZIP转录因子功能研究作了展望。

关键词: bZIP转录因子; 生长发育; 非生物逆境; 转录调控; 蛋白互作
中图分类号:S188;Q78 文献标志码:A 文章编号:1004-1524(2019)07-1205-10
Roles of bZIP transcription factors in plant growth and development and abiotic stress response
LIU Huijie1,2, XU Heng2, QIU Wenyi1,2, LI Xiaofang2,3, ZHANG Hua2, ZHU Ying2, LI Chunshou4, WANG Liangchao2,*
1. College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 321004,China
2. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control,Institute of Virology and Biotechnology,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China
3. College of Life Sciences,Hebei Normal University,Shijiazhuang 050000,China
4. Institute of Crop and Nuclear Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Abstract

During the plant life cycle, different sets of genes are designated to express at specific growth and developmental stage, or induced under certain circumstance such as drought, heat and so on. Gene expression is fine regulated by transcription factors. One catalog of transcription factor, the basic leucine zipper (bZIP) transcription factors, are involved in the regulation of various biological processes from development to stress response. During growth phase transformation or under stress, plant transcript profile is changing fast and dramatically. bZIP transcription factors are one of those regulators conduct this transcription reprogram. This paper mainly focused on the recent advances in bZIP transcription factor, including structures, sorts, roles in plant developments and abiotic stress.

Keyword: bZIP transcription factor; growth and developments; abiotic stress; transcriptional regulation; protein interaction

在植物的种子萌发、休眠、衰老以及花发育等生物学过程中, 不同的基因具有不同的时空表达特性, 它们的表达受到转录因子的精确调控; 在植物生长发育过程中, 它们无时无刻不面临着环境中非生物逆境的影响, 包括高温、低温、干旱等。这些不利因素往往会造成植物生长发育减缓甚至死亡, 从而导致农作物减产。庆幸的是在进化过程中, 植物获得了多种响应或抵抗逆境的能力, 其中利用转录因子调控逆境相关基因的表达, 从而能快速地响应、克服这些不利因素是最重要的一种防御机制。碱性亮氨酸拉链(basic leucine zipper, bZIP)转录因子家族在植物生长发育和非生物胁迫响应的过程中均扮演着非常重要的角色, 本文着重对bZIP转录因子家族在这两方面的最新研究进展进行了综述, 旨在为相关研究提供参考。

1 bZIP转录因子的结构特征

bZIP转录因子家族都具有一个高度保守的bZIP结构域, 为60~80个氨基酸。它由两部分组成:高度保守的结合DNA的碱性区和多变的亮氨酸拉链区[1]。碱性区的序列特征是含有一个不变的N-x7-R/K的基序, 其功能是识别启动子上的特定序列并与之结合; 亮氨酸拉链区则是由1个或多个重复区组成, 每个重复区含有7个氨基酸残基, 其中亮氨酸位于第七位, 其余的则包含一些疏水氨基酸, 比如异亮氨酸、缬氨酸、甲硫氨酸; 该区域具有寡聚功能, bZIP转录因子通过亮氨酸区形成同源或异源二聚体后, 可以行使转录激活或抑制功能。

2 bZIP转录因子的分布与分类

bZIP转录因子在动植物中广泛存在且数量较多。数据显示, 双子叶植物拟南芥中有75个bZIP转录因子, 约为人类、蠕虫和酵母数量的4倍[2], 单子叶模式植物水稻则更多一些, 有86个bZIP转录因子[3]。由此可见, 植物中的bZIP转录因子的家族成员在数量上占很大的比重。

早期Jakoby等[4]利用MEME(multiple em for motif elicitation)分析工具, 主要按照bZIP转录因子碱性区的特性对拟南芥的75个bZIP转录因子进行分类, 主要分为:A、B、C、D、E、F、G、H、I和S共10个亚家族。Liao等[5]根据bZIP转录因子的结构特征及拟南芥bZIP转录因子的分类法, 将大豆的131个bZIP类转录因子也分成了10个亚家族。随着生物信息学的进步, Corrê a等[6]利用Neighbour-Joining分类法, 以最短的bZIP基序(含44个氨基酸残基)为基准, 对已经测序的几个被子植物拟南芥、水稻和美国黑杨的bZIP转录因子家族进行了重新分类, 在原有的几个类别之外, 又进一步细分得到了J、K、L三个新的bZIP类别。最近Zhang等[7]利用专业的生物信息学软件MEGA6.0(Neighbour-Joining法), FastTree 2.1.7将大豆的160个bZIP转录因子分成了12个亚家族, 比之前Corrê a等[6]的分类少了L组。Zhao等[8]用类似的方法将苹果(Malus domestica Borkh)的112个bZIP转录因子家族分成了11个亚家族, 少了K、L这两个亚家族。随着生物信息学的进步, bZIP转录因子的分类也越来越精细和科学。

3 bZIP转录因子的功能研究

在植物中, bZIP转录因子在多种生物学过程中充当着重要的角色, 下面就bZIP转录因子在植物的生长发育和非生物胁迫调控(表1)等过程中的作用进行概述。

表1 已知与植物生长发育与非生物逆境响应相关的bZIP转录因子及功能 Table 1 bZIP transcription factors involved in plant growth development and abiotic stress response
3.1 bZIP转录因子与植物生长发育

诸多研究发现, bZIP类转录因子在植株的生长发育, 包括种子成熟、萌发及花的发育等过程中有着重要的作用。水稻花药特异表达基因OsTGA10/OsbZIP74, 其表达受到花分化相关基因OsMADS8的直接调控, 突变体ostga10表现为绒毡层发育不良, 雄性不育; 生化实验表明, OsTGA10与绒毡层相关蛋白TIP2、TDR存在相互作用, 同时也调控AP25和MTR1的表达, 从而参与花药及绒毡层的分化及发育[9]。拟南芥AtbZIP18与AtbZIP34、AtbZIP52及AtbZIP61在酵母中互作, 并一同参与了花粉的发育, 突变体atbzip18及atbzip34的少量花粉均无法形成正常的花粉壁[10, 11]。bZIP蛋白也参与植物根的生长发育。拟南芥AtbZIP29通过调控根尖分身组织细胞中细胞壁形成相关基因的表达, 从而影响根的生长发育[12]。玉米ZmbZIP4过表达能显著促进根的生长发育, 染色质免疫共沉淀显示ZmbZIP4能直接结合ZmLRP1、ZmSCR等根发育相关基因的启动子并促进其转录[13]。在单子叶植物中, 胚乳特异性表达的bZIP转录因子是种子发育过程的重要参与者, 如水稻OsbZIP58基因与6个淀粉合成基因的启动子相互作用, 并调控其表达, 突变体osbzip58的胚乳中总淀粉及直连淀粉的含量降低, 而支链淀粉中短链含量增高, 中长链分支降低[14]。玉米bZIP转录因子O2(Opaque-2)通过调控ZmbZIP17以及糊粉层发育相关基因ZmNKD2(NAKED ENDOSPERM2)的表达参与胚乳细胞分化及储藏物质形成, 后两者还能与O2一道共同激活其他受O2调控的目的基因的转录[15]。玉米ZmbZIP22能直接结合27KD-Y玉米胶蛋白基因的启动子并促进其表达, 从而促进玉米胚乳蛋白体的形成[16]。bZIP蛋白也参与马铃薯块茎淀粉的积累, 在马铃薯中过表达拟南芥ABF4能显著地提高块茎产量, 并且能够抑制块茎萌发, 提高块茎的加工和储藏品质[17, 18]

植物生长发育是一个包括能量的吸收、存储以及再分配的过程。植物应对胁迫的抗性反应是个消耗能量的过程, 如何平衡生长发育和抗性反应对植物来说非常重要, 研究发现, 植物可以通过调控bZIP转录因子来平衡这两个过程。拟南芥AtbZIP1、AtbZIP53、AtbZIP11、AtbZIP63是调控植物能量代谢的关键因子。在缺乏碳源的情况下, AtbZIP1和AtbZIP53形成异源二聚体, 直接调控氨基酸代谢关键基因天冬酰胺合酶, 脯氨酸脱氢酶的表达[19], 植物以氨基酸为碳源进行能量代谢; AtbZIP11的表达能导致代谢的改变, 显著促进海藻糖、肌醇、蜜三糖等小分子碳水化合物代谢相关基因的表达, 降低6-磷酸海藻糖的积累, 后者是生长促进因子, 导致植株出现生长停滞[20]AtbZIP63可以与AtbZIP1、AtbZIP11分别形成异源二聚体。AtbZIP63具有3个可以磷酸化的丝氨酸位点, 其磷酸化受AtSnRK1家族控制。在饥饿胁迫下, 糖类碳源减少, SnRK1对AtbZIP63的磷酸化程度加深, AtbZIP63倾向于与AtbZIP1形成异源二聚体, 开启以氨基酸为碳源的代谢途径; 而当细胞中存在蔗糖时, SnRK1对Atbzip63的磷酸化减弱, 后者则更多的与AtbZIP11结合[21]。利用以上研究结果, Sagor等[22]从番茄(Solanum lycopersicum)中克隆了AtbZIP11的两个同源基因SibZIP1和SibZIP2, 通过果实特异表达启动子E8分别驱动表达不包含SIRT(蔗糖诱导抑制翻译框)的剪切体, 获得了较野生型番茄含糖量增加1.5倍的转基因果实, 而且还没有其他的副作用。这些研究表明, 通过调控bZIP转录因子改良作物品质完全可行。

植物bZIP转录因子在植物的生长发育过程也扮演着负调控因子的角色。拟南芥AtbZIP11通过激活根生长发育负调控因子IAA3/SHY2的转录, 后者能高效抑制生长素运输促进基因家族PIN-FORMED(PIN)的表达, 导致生长素无法运输至根尖分生组织, 最终致使根生长发育迟滞[23]。拟南芥bZIP基因AtORG3通过抑制叶片细胞分裂限制叶片增大[24]。水稻OsbZIP48能抑制OsKO2的表达, 该基因编码赤霉素合成相关蛋白贝壳杉烯氧化酶2, 过表达OsbZIP48导致赤霉素合成降低植株矮化[25]。水稻ABF1, 及其同源基因OsbZIP40抑制水稻开花, OsABF1促进其目标基因OsWRKY104的转录, 后者直接抑制OsEhd1(Early heading date 1)的表达从而推迟水稻花原基的分化, 导致水稻开花推迟; 相反, 通过RNAi抑制OsABF1及OsbZIP40的表达则能显著提高OsEhd1的表达, 从而促使水稻提前开花[26], 该调控通路主要由干旱信号诱导独立于光及温度。bZIP转录因子参与ABA抑制种子萌发的过程, 拟南芥ABI3、ABI5能与DELLA蛋白形成转录复合物诱导SOMNUS表达, 后者抑制拟南芥种子的萌发[27]。ABA在种子发育后期诱导晚期胚胎发生丰富基因(LEA)的表达, 这些基因调控渗透调节物质的积累, ABA也阻碍种子的萌芽、生长, 同时分析ABI5突变体植株的表型, 发现该突变体的幼苗生长和种子萌发均受到抑制[28]。bZIP转录因子与ABA及对种子萌发抑制的研究也为通过操纵bZIP转录因子提高粮食的储存品质提供了参考。

3.2 bZIP转录因子与非生物胁迫

在植物生长发育过程中会遭遇各种各样的逆境胁迫, 包括干旱、低温、高盐等。面对胁迫, 植物会在生理、生化及分子水平上迅速作出响应, 即诱导非生物胁迫相关基因的表达进而改变生理生化过程来抵御各种环境胁迫带来的影响[29]。在这其中转录因子通过与其启动子区域中的顺式元件特异性结合进而调控逆境相关基因的表达是最主要的调控机制之一, 植物bZIP类转录因子就是这一过程的重要参与者。

3.2.1 bZIP转录因子与干旱胁迫

水分是植物生长过程中不可或缺的环境因子, 干旱是威胁植物生长发育的头号不利环境因素。在种子萌发和植物发育过程中, 过表达苎麻BnbZIP2的转基因拟南芥植物对干旱更敏感, 对盐胁迫的耐受性高于野生型[30]。此外, 在拟南芥中过量表达刚毛怪柳ThbZIP1能显著增强转基因植物对干旱和盐胁迫的抗性[31], 过表达玉米ZmbZIP72赋予转基因拟南芥优异的抗旱和耐盐性[32]。Hsieh等[33]研究发现, 干旱处理SlAREB1转基因番茄和野生型对照, 3周后转基因植株表型正常, 而野生型的叶子呈萎蔫和卷曲状。水稻OsbZIP71能够直接结合OsNHX1和COR413-TM1两个非生物逆境相关基因的启动子并激活转录, 从而增强植株的抗旱抗盐能力[34]。在烟草中过表达枸枳(Poncirus trifoliata L.)PtrABF能稳定地促进烟草中9个胁迫响应基因的表达, 并且在干旱胁迫下显著诱导表达3个抗氧化物酶基因, 从而能更好地清除活性氧自由基, 进而增强了转基因植株对干旱的抗性[35]。水稻ABF1的插入突变体abf1-1对干旱敏感, 在水稻中过表达ABF1则能显著增强转基因水稻的抗旱能力, RNA-Seq及染色质免疫共沉淀鉴定的ABF1目标基因中共有242个与干旱响应相关, ABF1直接调控蛋白磷酸酶2C家族的OsPP48、OsPP108, bZIP家族的bZIP23、bZIP46、bZIP72的表达, 表明ABF1通过调控ABA途径参与对水稻的干旱响应[36]。有趣的是, OsbZIP23的同源基因OsbZIP46, 同样参与ABA信号的正调控, 然而由于结构特性, 该蛋白的D结构域对其自身转录激活功能具有抑制作用, 因而过表达完整蛋白并不能增强植物的抗干旱能力, 但是过表达缺失D结构域的剪切体, 能诱导抗性相关基因的表达, 从而使植株的抗旱能力增强[37]。此外, 在植物中过表达玉米ABP9[38]、拟南芥ABF3[39]、水稻OsbZIP23[40]、小麦TabZIP60[41]等, 转录因子均能显著地提高转基因植株的抗旱能力。这些研究不仅仅证明了植物bZIP基因在植物抗旱响应过程中的重要作用, 也为我们通过这些转录因子改良作物的抗旱能力提供了参考。

3.2.2 bZIP转录因子与盐胁迫

在植物生长发育中, 盐分同样是不可或缺的生存条件, 当生存环境中的盐浓度高于植株所承受的范围时, 会导致植物生长发育受阻甚至死亡。研究表明, 高盐胁迫下, 在植物的生理生化过程中bZIP转录因子起着积极的作用, 从而使得植物获得较高的耐盐能力。在耐盐和敏感型水稻中bZIP转录因子OsBZ8有着不同程度的表达情况, 研究发现, 在ABA处理下, OsBZ8 基因表达量明显增强, 当对水稻进行高盐处理后, 在籼稻中OsBZ8在耐盐品种的表达明显高于盐敏感的品种[42], OsbZIP12(OsABF1)、OsbZIP46(OsABF2)和OsbZIP72在盐胁迫下强烈诱导表达[43, 44, 45]。水稻OsbZIP71虽然在酵母和水稻原生质体中不具有转录活性, 但是它在酵母中能形成同源二聚体, 也可以与C类bZIP转录因子形成异源二聚体, 在水稻中过表达OsbZIP71能显著增强转基因水稻的抗盐能力[46]。此外, 大豆GmbZIP44、GmbZIP62和GmbZIP78基因能显著提高转基因拟南芥的耐盐性[5]。研究显示, 玉米bZIP基因ABP9[47]ZmbZIP72能够使植株获得较高的耐盐能力, Wang等[48]在棉花中表达玉米ABP9, Ying等[49]在拟南芥中表达ZmbZIP72转录因子, 均能显著提高转基因植株的抗盐能力。在高盐胁迫下, 与野生型水稻植物相比, OsABF1突变体Osabf1-1和Osabf1-2[43]表现地更为敏感。油菜(Brassica napus L.)bZIP转录因子BnaABF2通过ABA途径增强植株的耐盐能力[50]。Sunitha等[51]在水稻中过表达木豆CcCDR(cold and drought regulatory protein)增强了水稻对盐、干旱、低温等众多胁迫的抗性。众多bZIP基因能显著地增强植物的抗盐能力, 使得bZIP基因家族成为一个提高作物抗盐害特性的基因宝库, 利用bZIP转录因子改良作物抗盐品质大有可为。

3.2.3 bZIP转录因子与高温胁迫

当植物所处的环境温度高于其最适生长温度时, 就会对植物的生长发育产生不良影响, 这就是高温胁迫。植物在抽穗期遭遇高温胁迫会使植株的开花发生异常, 而且会造成低结实率的现象。研究表明, bZIP转录因子在植物高温胁迫的途径扮演着不可或缺的部分。玉米bZIP转录因子ZmBZIP4表达受高温诱导[14]; 在水稻中同时过表达OsbZIP46、CA1和蛋白激酶OsSAPK6与单独过表达其中一个的转基因植株表现出了更好的抗热能力[52]。过表达龙爪稷(Eleusine coracana L.)转录因子EcbZIP17的转基因烟草, 在适温及高温胁迫下在长势、种子产量等各方面的表现均较野生型有优势[53]。进一步的生理生化分析表明, 在适温下EcbZIP17通过油菜素内酯(BR)途径促进转基因烟草的生长发育; 在胁迫条件下其能激活内质网胁迫响应基因BipPDILCRT1等的表达从而增强植株抗逆能力。在拟南芥中过表达小麦(Triticum aestivum)TabZIP60也能通过激活内质网胁迫响应增强转基因植株的抗热能力[54]。胡椒(Capsicum annuum)CabZIP63与CaWRKY40存在相互作用, 并且能够相互促进表达, 形成一个正反馈回路, 共同促进下游抗高温高湿响应基因的表达从而提高植物的高温耐性[55]

3.2.4 bZIP转录因子与低温胁迫

当植物所处的环境温度低于其最适生长温度时, 就会使得植株生长缓慢, 甚至会造成植株生理机制的伤害, 有时会直接导致植株死亡, 这就是低温胁迫。植物响应低温胁迫主要通过ICE-CBF-COR途径, 植物感受低温后由ICE(inducer of CBF expression)诱导CBFs(C-repeat-binding Factors)表达, 后者则能识别位于COR(cold regulated genes)启动子上的CRT/DRE(C-repeat/dehydration responsive element)结合激活基因转录增强植株冷胁迫抗性[56]。bZIP类转录因子在调控植物冷胁迫响应中也同样扮演了不可或缺的角色。苹果(Malus × domestica)bZIP转录因子MdHY5在转录和蛋白两个水平上都对冷胁迫存在响应, 过表达MdHY5能显著增强苹果愈伤组织和转基因拟南芥的冷胁迫抗性, 电泳迁移率变动分析(electrophoretic mobility shift assay, EMSA)表明, MdHY5能直接结合MdCBF1启动子上的G-Box促进其转录, 并且MdHY5还能调控不依赖于CBF的COR基因的表达[57]。Liu等[58]鉴定到水稻中一共有8个bZIP基因OsbZIP08、OsbZIP35、OsbZIP38、OsbZIP46、OsbZIP63、OsbZIP72、OsbZIP73和OsbZIP76与苗期低温抗性相关, 其中bZIP73在粳稻和籼稻中存在一个单碱基差异, 导致一个氨基酸变异(+171 aa, Glu> Lys); 并且通过进一步的基因组地域足迹分析表明, OsbZIP73有明显的地域分布特性, 北方低温区均为粳稻背景, 而南方低温区则主要为籼稻背景, 表明OsbZIP73参与了早期粳稻耐冷驯化的选择。生化实验表明, OsbZIP73与OsbZIP71相互作用, 后者能增强OsbZIP73的活性, 从而降低低温胁迫下细胞内ROS、ABA水平, 进而增强粳稻的耐冷能力。在拟南芥中过表达小麦TabZIP14-BTaAREB3、TabZIP60均能显著增强植株抵抗冷胁迫的能力, 转录分析表明, 转基因植株的逆境响应基因大范围上调表达, 此外转基因植株对ABA比野生型敏感, 表明TabZIP14-BTaAREB3均是通过ABA途径来增强植株的抗冷能力[59, 60, 61]

3.2.5 bZIP转录因子在非生物胁迫中的负调控作用

除了上述提到的bZIP转录因子在非生物胁迫中起着正调控作用之外, 还有一些bZIP转录因子起着负调控作用。OsbZIP52过表达株系对冷和干旱胁迫均较野生型敏感, qRT-PCR结果表明, 转基因植株中OsLEA3、OsTPP1、Rab25等非生物逆境相关基因的表达较野生型降低, 表明OsbZIP52对水稻干旱和冷胁迫是负调控作用[62]OsABI5作为负调节因子参与水稻的盐胁迫耐受反应, OsABI5过表达植株在高盐浓度下出现比野生型更明显的萎黄现象[63]。另外, Yang等[64]研究发现, 通过RNAi干扰技术抑制AthZIP24的表达水平, 可大大提高拟南芥转基因植株的耐盐性。过表达番茄SlbZIP38能抑制高盐、干旱胁迫下植株中叶绿素及脯氨酸的积累, 同时ABA响应的逆境相关基因的表达较对照显著下降, 从而使得植株对胁迫敏感, 表明SlbZIP38参与了盐及干旱胁迫响应的负调控[65]。野茶树的CsbZIP6的表达在低温条件下被诱导, 在拟南芥中过表达野茶树CsbZIP6导致植株对低温胁迫敏感, 转录组分析表明, 与野生型比较, 过表达植株中低温及干旱响应基因的表达显著降低, 表明CsbZIP6对植物冷胁迫起负调控作用[66]。在拟南芥中过表达小麦TabZIP6显著降低了转基因植株中CBFs、关键CORs等基因的表达, 从而使得转基因植株对低温敏感[67]

4 展望

bZIP转录因子在植物生命过程中充当着不可或缺的角色。自从发现bZIP转录因子以来, 许多学者通过生物信息学、分子生物学等方法, 对不同的植物中的bZIP转录因子进行鉴定并研究其生物学功能。已有的一系列研究结果表明, bZIP转录因子参与植物的生长、衰老、抗逆反应等生理过程。此外, bZIP转录因子还参与开花调控、花的发育等生理过程。因为bZIP转录因子的数量众多, 各亚族的信号传导机制和亚族之间的交叉功能还需进一步研究探讨; 期待研究者分离出更多的bZIP转录因子, 从而进一步探讨其在激素信号、抗逆途径中的作用以及bZIP转录因子对能量代谢途径的调控机制, 进一步完善bZIP转录因子的功能研究。

参考文献
[1] WANG Z H, CHENG K, WAN L Y, et al. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes[J]. BMC Genomics, 2015, 16: 1053. [本文引用:1]
[2] RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. [本文引用:1]
[3] E Z G, ZHANG Y P, ZHOU J H, et al. Mini review roles of the bZIP gene family in rice[J]. Genetics and Molecular Research, 2014, 13(2): 3025-3036. [本文引用:1]
[4] JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. BZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111. [本文引用:1]
[5] LIAO Y, ZOU H F, WEI W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2): 225-240. [本文引用:2]
[6] CORRÊA L G G, RIAÑO-PACHÓN D M, SCHRAGO C G, et al. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes[J]. PLoS One, 2008, 3(8): e2944. [本文引用:2]
[7] ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19: 159. [本文引用:1]
[8] ZHAO J, GUO R R, GUO C L, et al. Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family[J]. Frontiers in Plant Science, 2016, 7: 376. [本文引用:1]
[9] CHEN Z S, LIU X F, WANG D H, et al. Transcription factor OsTGA10 is a target of the MADS protein OsMADS8 and is required for tapetum development[J]. Plant Physiology, 2018, 176(1): 819-835. [本文引用:1]
[10] GIBALOVÁ A, RENÁK D, MATCZUK K, et al. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen[J]. Plant Molecular Biology, 2009, 70(5): 581-601. [本文引用:1]
[11] GIBALOVÁ A, STEINBACHOVÁ L, HAFIDH S, et al. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte[J]. Plant Reproduction, 2017, 30(1): 1-17. [本文引用:1]
[12] VAN LEENE J, BLOMME J, KULKARNI S R, et al. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development[J]. Journal of Experimental Botany, 2016, 67(19): 5825-5840. [本文引用:1]
[13] MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. [本文引用:1]
[14] WANG J C, XU H, ZHU Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. [本文引用:2]
[15] ZHAN J P, LI G S, RYU C H, et al. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm[J]. The Plant Cell, 2018, 30(10): 2425-2446. [本文引用:1]
[16] LI C B, YUE Y H, CHEN H J, et al. The ZmbZIP22 transcription factor regulates 27-kd γ-zein gene transcription during maize endosperm development[J]. The Plant Cell, 2018, 30(10): 2402-2424. [本文引用:1]
[17] MUÑIZ GARCÍA M N, STRITZLER M, CAPIATI D A. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation[J]. Planta, 2014, 239(3): 615-631. [本文引用:1]
[18] MUÑIZ GARCÍA M N, CORTELEZZI J I, FUMAGALLI M, et al. Expression of the Arabidopsis ABF4 gene in potato increases tuber yield, improves tuber quality and enhances salt and drought tolerance[J]. Plant Molecular Biology, 2018, 98(1/2): 137-152. [本文引用:1]
[19] DIETRICH K, WELTMEIER F, EHLERT A, et al. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress[J]. The Plant Cell, 2011, 23(1): 381-395. [本文引用:1]
[20] MA J K, HANSSEN M, LUNDGREN K, et al. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism[J]. New Phytologist, 2011, 191(3): 733-745. [本文引用:1]
[21] MAIR A, PEDROTTI L, WURZINGER B, et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants[J]. eLife, 2015, 4: 05828. [本文引用:1]
[22] SAGOR G H M, BERBERICH T, TANAKA S, et al. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene[J]. Plant Biotechnology Journal, 2016, 14(4): 1116-1126. [本文引用:1]
[23] WEISTE C, PEDROTTI L, SELVANAYAGAM J, et al. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth[J]. PLoS Genetics, 2017, 13(2): e1006607. [本文引用:1]
[24] OMIDBAKHSHFARD M A, FUJIKURA U, OLAS J J, et al. GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia[J]. PLoS Genetics, 2018, 14(7): e1007484. [本文引用:1]
[25] BURMAN N, BHATNAGAR A, KHURANA J P. OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light-regulated development[J]. Plant Physiology, 2018, 176(2): 1262-1285. [本文引用:1]
[26] ZHANG C Y, LIU J, ZHAO T, et al. A drought-inducible transcription factor delays reproductive timing in rice[J]. Plant Physiology, 2016, 171(1): 334-343. [本文引用:1]
[27] LIM S, PARK J, LEE N, et al. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis[J]. The Plant Cell, 2013, 25(12): 4863-4878. [本文引用:1]
[28] ARGYRIS J, DAHAL P, HAYASHI E, et al. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes[J]. Plant Physiology, 2008, 148(2): 926-947. [本文引用:1]
[29] ZOU J, LIU C F, LIU A L, et al. Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice[J]. Journal of Plant Physiology, 2012, 169(6): 628-635. [本文引用:1]
[30] HUANG C J, ZHOU J H, JIE Y C, et al. A ramie bZIP transcription factor BnbZIP2 is involved in drought, salt, and heavy metal stress response[J]. DNA and Cell Biology, 2016, 35(12): 776-786. [本文引用:1]
[31] JI X Y, LIU G F, LIU Y J, et al. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis[J]. BMC Plant Biology, 2013, 13(1): 151. [本文引用:1]
[32] YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2): 253-266. [本文引用:1]
[33] HSIEH T H, LI C W, SU R C, et al. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response[J]. Planta, 2010, 231(6): 1459-1473. [本文引用:1]
[34] LIU C T, MAO B G, OU S J, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1/2): 19-36. [本文引用:1]
[35] HUANG X S, LIU J H, CHEN X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biology, 2010, 10(1): 230. [本文引用:1]
[36] ZHANG C Y, LI C, LIU J, et al. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice[J]. Journal of Experimental Botany, 2017, 68(16): 4695-4707. [本文引用:1]
[37] TANG N, ZHANG H, LI X, et al. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. [本文引用:1]
[38] WANG C L, LU G Q, HAO Y Q, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton[J]. Planta, 2017, 246(3): 453-469. [本文引用:1]
[39] WANG Z, SU G X, LI M, et al. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa[J]. Plant Physiology and Biochemistry, 2016, 109: 199-208. [本文引用:1]
[40] XIANG Y, TANG N, DU H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. [本文引用:1]
[41] ZHANG L N, ZHANG L C, XIA C, et al. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis[J]. Physiologia Plantarum, 2015, 153(4): 538-554. [本文引用:1]
[42] MUKHERJEE K, CHOUDHURY A R, GUPTA B, et al. An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice[J]. BMC Plant Biology, 2006, 6(1): 1-14. [本文引用:1]
[43] AMIR HOSSAIN M, LEE Y, CHO J I, et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4/5): 557-566. [本文引用:2]
[44] HOSSAIN M A, CHO J I, HAN M, et al. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520. [本文引用:1]
[45] LU G J, GAO C X, ZHENG X N, et al. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615. [本文引用:1]
[46] LIU C T, MAO B G, OU S J, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1/2): 19-36. [本文引用:1]
[47] ZHANG X, WANG L, MENG H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Molecular Biology, 2011, 75(4/5): 365-378. [本文引用:1]
[48] WANG C L, LU G Q, HAO Y Q, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton[J]. Planta, 2017, 246(3): 453-469. [本文引用:1]
[49] YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2): 253-266. [本文引用:1]
[50] ZHAO B Y, HU Y F, LI J J, et al. BnaABF2, a bZIP transcription factor from rapeseed ( Brassica napus L. ), enhances drought and salt tolerance in transgenic Arabidopsis[J]. Botanical Studies, 2016, 57: 12. [本文引用:1]
[51] SUNITHA M, SRINATH T, REDDY V D, et al. Expression of cold and drought regulatory protein (CcCDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants[J]. Planta, 2017, 245(6): 1137-1148. [本文引用:1]
[52] CHANG Y, NGUYEN B H, XIE Y J, et al. Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice[J]. Frontiers in Plant Science, 2017, 8: 1102. [本文引用:1]
[53] RAMAKRISHNA C, SINGH S, RAGHAVENDRARAO S, et al. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses[J]. Scientific Reports, 2018, 8(1): 2148. [本文引用:1]
[54] GENG X L, ZANG X S, LI H R, et al. Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis[J]. Plant Science, 2018, 274: 252-260. [本文引用:1]
[55] SHEN L, LIU Z Q, YANG S, et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40[J]. Journal of Experimental Botany, 2016, 67(8): 2439-2451. [本文引用:1]
[56] SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7): 623-637. [本文引用:1]
[57] AN J P, YAO J F, WANG X N, et al. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple[J]. Journal of Plant Physiology, 2017, 218: 275-281. [本文引用:1]
[58] LIU C T, OU S J, MAO B G, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9: 3302. [本文引用:1]
[59] ZHANG L N, ZHANG L C, XIA C, et al. A novel wheat C-bZIP gene, TabZIP14-B, participates in salt and freezing tolerance in transgenic plants[J]. Frontiers in Plant Science, 2017, 8: 710. [本文引用:1]
[60] WANG J Y, LI Q, MAO X G, et al. Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis[J]. International Journal of Biological Sciences, 2016, 12(2): 257-269. [本文引用:1]
[61] ZHANG L N, ZHANG L C, XIA C, et al. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis[J]. Physiologia Plantarum, 2015, 153(4): 538-554. [本文引用:1]
[62] LIU C T, WU Y B, WANG X P. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6): 1157-1169. [本文引用:1]
[63] ZOU M J, GUAN Y C, REN H B, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6): 675-683. [本文引用:1]
[64] YANG O, POPOVA O V, SÜTHOFF U, et al. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance[J]. Gene, 2009, 436(1/2): 45-55. [本文引用:1]
[65] PAN Y L, HU X, LI C Y, et al. SlbZIP38, a tomato bZIP family gene downregulated by abscisic acid, is a negative regulator of drought and salt stress tolerance[J]. Genes, 2017, 8(12): 402. [本文引用:1]
[66] WANG L, CAO H L, QIAN W J, et al. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis[J]. Annals of Botany, 2017, 119(7): 1195-1209. [本文引用:1]
[67] CAI W T, YANG Y L, WANG W W, et al. Overexpression of a wheat ( Triticum aestivum L. ) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs[J]. Plant Physiology and Biochemistry, 2018, 124: 100-111. [本文引用:1]