活性氧调控果实发育成熟的研究进展
王震光, 余义和, 郭大龙*
河南科技大学 林学院,河南省园艺植物品质调控工程技术研究中心,河南 洛阳 471023
*通信作者,郭大龙,E-mail: guodalong@haust.edu.cn

作者简介:王震光(1992—),男,河南驻马店人,硕士,主要从事果实发育与品质调控研究。E-mail: wangzhenguang27@163.com

摘要

活性氧(reactive oxygen species,ROS)存在于整个植物生长发育过程,一旦积累过多会导致氧化应激反应,但是适度的氧化胁迫有利于果实成熟。本文对活性氧影响果实成熟的生理机制,活性氧与激素互作调控果实成熟的机理,活性氧调控果实成熟的分子机制,以及活性氧与钙离子调控采后果实后熟等相关研究进展进行了总结和评述,旨在通过总结活性氧直接或间接调控果实衰老成熟的研究进展,为今后利用活性氧调控果实成熟提供理论依据和参考。

关键词: 活性氧; 果实; 发育; 成熟
中图分类号:S66 文献标志码:A 文章编号:1004-1524(2020)11-2103-08
Advances in ROS promoting fruit development and ripening
WANG Zhenguang, YU Yihe, GUO Dalong*
College of Forestry, Henan University of Science and Technology, Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
Abstract

ROS is produced along the fruit development, which often damages proteins, lipids, carbohydrates, and DNA, causing severe cell membrane damage and inducing programmed cell death. But moderate oxidative stress is conducive to fruit ripening. The physiological mechanism of ROS affecting the fruit ripening, the interaction mechanism of ROS and hormones regulating fruit ripening, the molecular mechanism of ROS directly regulating the fruit ripening, the cooperative interaction of ROS and calcium ions regulating postharvest fruit ripening were summarized, to provide a theoretical basis and reference for employing ROS to regulate fruit ripening directly or indirectly.

Keyword: reactive oxygen species; fruit; development; ripening

植物体内的活性氧(reactive oxygen species, ROS)是在线粒体、叶绿体、过氧化物酶体和质外体中通过有氧新陈代谢产生的[1, 2]。ROS是植物体内正常代谢过程中不可避免的副产品[3]。其中超氧阴离子自由基( O2-·)、羟基自由基(· OH)、过氧化氢(H2O2) 及单线态氧(1O2)是几种主要的ROS[4, 5]

为了保持正常的生长发育, 植物体内的ROS清除机制通过调控ROS的产生与积累使其保持在一定范围内。研究表明, H2O2在植物细胞中起着双重作用:低浓度时作为信号分子能够正向调控万寿菊和甘薯不定根的生长[6, 7]; 高浓度时能够引起氧化胁迫, 诱导细胞程序性死亡[8]。果实成熟是一个复杂的、高度协同的生长发育过程[9], 一系列生理生化过程发生了明显的变化, 例如:果实香气产生、质地变化、颜色变化、糖代谢等[10], 这些在一定程度上影响着果实的品质。近年来, 关于ROS在植物抗逆及植物生长发育过程中调节作用的研究已十分深入, 但ROS调控果实发育成熟的相关机理尚不明了, 本文对近年来ROS与果实生长发育、成熟之间关系的研究进展进行评述。

1 ROS调控果实发育成熟

H2O2作为ROS在过去的几十年中得到了广泛的关注[8], 其具有稳定的化学性质, 在应激信号转导过程中起着主要的调节作用[11]。H2O2是通过超氧化物歧化酶(superoxide dismutase, SOD)、NADPH氧化酶(NADPH oxidase, NOX)、脂氧合酶(lipoxygenase, LOX)等在叶绿体和线粒体中经电子传递而产生[12], 是最稳定的ROS, 在各种生理过程中作为一种与衰老相关的信号分子发挥着重要作用[13, 14]

H2O2也是一种强氧化剂, 可以加剧局部氧化损伤, 导致代谢功能紊乱并且破坏细胞的完整性[15]。低浓度的H2O2可以作为信号分子, 在生物和非生物胁迫应答、激素应答、生长发育调控过程中起重要作用[16]。但是, 当植物组织中的H2O2含量积累过多时会对生物大分子产生一定的伤害, 对细胞具有毒害作用进而引起细胞死亡[17]。H2O2在桃果实发育中期起信号分子的作用, 但在果实成熟后期导致脂质过氧化和氧化应激[18, 19]。转色期是葡萄果实成熟的开始, Pilati等[20]指出葡萄在转色期表现出明显的氧化暴发现象, 并且H2O2在这一时期快速积累, 随着H2O2的积累明显观察到葡萄果皮颜色加深, 果实变软。Pandey等[4]研究显示, 木瓜果实在成熟过程中也表现出明显的氧化暴发现象, 并且在木瓜果实成熟时H2O2含量增加的同时伴随着脂质过氧化作用。H2O2处理会降低采后龙眼果实的ROS清除能力, 导致龙眼果实中ROS过量积累, 促进膜脂过氧化和膜系统区室化功能的丧失, 促进酚类物质和多酚氧化酶的接触, 从而导致龙眼果皮褐变[21, 22]

H2O2参与了番茄果实组织细胞膜和细胞壁的降解, 从而导致果实软化[23]。H2O2含量在番茄果实破色期增加, 引起脂质和蛋白质的氧化损伤增加进而加速果实成熟[24]。Kumar等[25]研究显示, 与突变体(rin)番茄果实相比, 野生型果实中APX活性较低, 导致对H2O2的清除能力降低, 增加了H2O2水平, 从而加剧了细胞壁的降解, 进而加速果实的软化成熟。Guo等[26]用外源H2O2处理巨峰葡萄果实的研究表明, 外源H2O2处理后对内源H2O2含量、过氧化氢酶(catalase, CAT)、SOD活性以及 O2-·产率都有一定的影响; 然而, 巨峰葡萄果实内的丙二醛(malonaldehyde, MDA)含量没有显著的变化, H2O2处理促进巨峰葡萄果实提早成熟20 d, 这说明外源H2O2可能是作为信号分子参与调控巨峰葡萄果实成熟。

核黄素在光下能分解产生 O2-·, 其作为一种外源ROS, 可启动与葡萄果实快速发育有关ROS的产生途径, 从而促进巨峰葡萄果实提早成熟16 d[27]。H2O2通过Fenton反应和Haber-Weiss反应生成活性更高的· OH [28], · OH能够引起细胞壁代谢和氧化胁迫, 以此引起细胞提前衰老; 此外, · OH能够促使细胞壁多糖断裂并且修饰和降解木质素导致细胞壁降解[29]; 也能够促进香蕉果肉细胞壁多糖的降解, 从而加速香蕉果实软化[30]

2 ROS与激素共同协作调控果实发育成熟

ROS是植物激素信号网络的组成部分[1], 在植物应对外界胁迫反应中起着重要作用[31]。在植物生长发育过程中各种植物激素也都起着重要作用, 许多成熟缺陷型突变体、外源激素施加后转录组分析证明, 脱落酸(abscisic acid, ABA)和乙烯是与活性氧相互作用调控果实成熟的主要调节因子, 而其他植物激素则起到协调、辅助作用[32, 33]

乙烯在果实成熟过程中起重要作用, 其对果实成熟的影响与ROS的代谢有关[34]。Masia[35]指出, 在果实成熟过程中乙烯能够诱导MnSOD活性增加, 导致H2O2水平积累从而加速果实成熟。乙烯处理能够增强氧化应激, 而1-甲基环丙烯(1-methylcyclo propene, 1-MCP)则表现出相反的影响[36]。较高氧化应激栽培品种比较低氧化还原状态的栽培品种成熟快的现象已经在番茄果实中得到证明[37]。此外, 1-MCP处理的梨果实中H2O2含量明显低于未处理的果实[38]; 外源乙烯处理杧果果实后增加了H2O2含量并且诱导了SOD和APX活性, 从而使杧果果实成熟[39]。Kumar等[25]对番茄果实发育过程进行了分析, 发现不同成熟阶段的番茄果实中氧化还原状态发生了变化, 在破色期H2O2含量明显增加。H2O2含量的增加很可能是由乙烯调节的, 乙烯是果实成熟的关键调节因子, 不仅可以提高果实的呼吸速率而且还可以促进ROS的产生[40]。Li等[41]对猕猴桃采后研究发现, 乙烯处理猕猴桃以后能够快速增加果实内H2O2含量和 O2-·的速率, 进而促进了猕猴桃果实的软化。陈昆松等[42]使用外源茉莉酸(jasmonic acid, JA)和水杨酸(salicylic acid, SA)处理猕猴桃果实后发现, 茉莉酸处理对猕猴桃果实内LOX活性、 O2-·产率和乙烯合成均有促进作用, 而SA处理对其均有抑制作用; 即JA处理能够与ROS、乙烯协同作用共同调控猕猴桃果实成熟, SA处理能够抑制猕猴桃果实成熟。

脱落酸(abscisic acid, ABA)通过诱导CAT活性抑制H2O2的积累, 从而保护细胞免受ROS氧化损伤[43]。但是, ABA在生物/非生物胁迫下诱导H2O2和超氧化物的合成, 以此引起氧化应激[44]。ABA处理冬枣果实能够加快 O2-·产率和提升丙二醛(MDA)含量, 使H2O2达到峰值的时间提前, ROS快速积累, 导致膜系统损伤从而加速了果实的衰老进程; 然而用100 μ g· L-1的赤霉素(GA3)处理冬枣以后, 通过对其生理指标测定发现GA3处理能够延缓H2O2、MDA和 O2-·的积累, 延缓ROS伤害的程度, 从而延缓果实的成熟[45]。在干旱条件下, ABA通过诱导CAT活性阻止H2O2的积累从而保护细胞免受ROS氧化损伤[43]。Wang等[46]指出, 在黄瓜果实成熟过程中其主要依赖ABA途径来减少黄瓜体内活性氧的积累, 进而延缓黄瓜的后熟过程。除了ABA与ROS直接相互作用调控果实成熟之外, 也有人提出ABA作为信号分子刺激ROS的生成, 从而诱导许多基因参与抗氧化防御系统[47]。综上所述, 乙烯、JA和ABA均能与ROS相互作用共同促进果实的成熟, SA和GA3均能与ROS相互作用抑制果实成熟。

3 ROS与钙共同协作调控采后果实后熟

无论是呼吸跃变性果实还是非呼吸跃变性果实在采后都会随着采后时间的增加而出现后熟现象。采后果实在正常情况下贮存时间较短, 随着贮藏时间的增加果实开始出现腐烂现象, 造成了资源的浪费。已有研究表明, 在果实成熟过程中钙能够促进抗氧化系统, 保护细胞膜的完整性, 并对细胞壁结构进行修饰, 防止细胞壁被破坏导致果实软化[48]。氯化钙(calcium chloride, CaCl2)处理提高了果实的抗氧化性能, 从而清除过量的ROS, 降低果实的氧化损伤[49]。水蜜桃贮藏过程中, 适宜浓度的CaCl2处理能够增加果实的AsA含量[50], 而AsA主要清除 O2-·, 并且把H2O2还原成水[51], 从而减少果实的氧化应激, 延缓水蜜桃果实的过熟现象。外源喷施CaCl2可以明显提高枣果实中SOD、POD和CAT 活性, 从而降低枣果实内H2O2含量, 延缓枣果实的成熟[52]。Kou等[53]用CaCl2溶液浸泡采后的皇冠梨, 测定其生理指标发现, CaCl2处理能够调控果实内SOD的活性, 从而延缓梨的后熟现象。但是, 钙的缺乏会导致SOD、CAT活性的降低和MDA含量的增加, 引起ROS的积累进而导致皇冠梨果实的过熟现象[54]。在树莓果实采后贮藏过程中, 为了保持较高的贮藏品质, 韩絮舟等[55]研究表明, 外源CaCl2处理能够提高树莓果实POD和CAT活性, 抑制MDA含量的积累, 降低树莓果实体内ROS的积累从而提高抗氧化活性, 延缓果实软化, 在草莓[56]和蓝莓[57]中也得到了相同的结果。

目前已有的研究仅仅从生理上探究ROS和钙离子共同协作调控采后果实过熟, 但是ROS和钙离子怎样精细调控果实成熟的机理尚不清楚, 还需要进一步研究。

4 ROS在果实中的代谢调控

由于ROS具有较高的氧化能力, 会对蛋白质、脂质、碳水化合物和DNA造成损害, 导致核酸受损、蛋白质氧化和脂质过氧化反应, 造成细胞膜严重受损, 诱导细胞程序性死亡[58, 59]。ROS也能够引起线粒体蛋白氧化损伤, 导致线粒体功能障碍从而影响果实发育[60]。为了保证正常的生命活动, 植物体内存在的ROS清除机制可以在一定范围内调控ROS的产生与积累, 其中包括酶类系统, 超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)、过氧化物酶(peroxidase, POD)等, 和非酶类系统, 抗坏血酸-谷胱甘肽循环(ascorbic acid-glutathione, AsA-GSH)等[61, 62]。在一定范围内, SOD将 O2-·歧化为无毒的O2和毒性较低的H2O2, 而CAT, POD和APX能够有效地清除H2O2从而保护植物免受氧化应激伤害[63]。褪黑素是一种天然存在的吲哚胺, 广泛分布于植物界[64], 褪黑素处理桃果实增强了果实内SOD、POD、CAT和APX的活性, 从而降低了 O2-·和H2O2水平, 减轻了脂质过氧化, 能够有效地延缓桃果实衰老[64]。草酸处理桃果实也增强了桃果实中SOD、POD、CAT和APX的活性, 清除了ROS, 从而延迟桃果实的衰老[65]

越来越多的证据表明, NADPH氧化酶(NOX)是ROS调控网络中的关键信号节点; 并且与多种信号转导通路结合共同调控ROS信号传导从而介导多种重要的生物学过程, 如细胞生长、非生物应激反应[66, 67]。在辣椒果实中CAT和NADP-异柠檬酸脱氢酶参与调控H2O2和NADPH的产生[68, 69]。植物NADPH氧化酶被称为呼吸暴发氧化酶同源物(RBOHD)[70]。RBOH引起 O2-·和H2O2氧化暴发所产生的氧化反应导致脂质过氧化、细胞膜损伤和细胞程序性死亡[71]。植物体内酶类系统和非酶类系统协同作用使ROS的产生与清除处于一种动态平衡, 从而来调节植物体内ROS水平[72]

牛磺酸处理能够诱导CuSODFeSODZnSODPODCAT基因的表达, 清除ROS的积累, 从而减轻细胞氧化损伤, 延缓桃果实的衰老[73]。Kumar等[25]在对rin突变体和野生型番茄果实相比较时, 发现在rin突变体中APXSOD的转录水平存在差异; 而APX和SOD参与ASA和GSH的再生, AsA和GSH在清除ROS的过程中起着重要作用; 这表明调控ROS相关的基因在rin突变体和野生型中存在着差异表达。峰早是巨峰的早熟芽变[74], 通过分析峰早和巨峰2个品种的RNA-seq和qPCR, 发现SOD基因在峰早中的表达明显低于巨峰[10]; 峰早中SOD基因表达量低于巨峰, 可能导致ROS在峰早中积累过多从而促进果实早熟。H2O2处理番茄幼苗结果发现, 处理后ACO5、ACS6、PG均明显上调表达, 这说明H2O2能够调控相关基因的表达从而促进果实的软化与成熟[25]。在大白菜和拟南芥中过量表达APX2和APX3基因能够有效地清除细胞内的H2O2, 从而提高种子的发芽率[75]CAT1和谷胱甘肽过氧化物酶(glutathione peroxidase 6, GPX6)是缓解长期冷藏诱导桃果实氧化应激的2个关键基因, 并且在桃果实成熟后期表达显著上调, 增强了果实成熟后期的抗氧化胁迫能力[19]

总之, ROS不仅能够直接参与调控果实成熟, 还能够与激素、相关基因互作调控果实的成熟(图1), 同时还能与钙离子协同作用调控采后果实的后熟。

图1 ROS和激素、相关基因互作模式图
CAT1, 过氧化氢酶; GPX6, 谷胱甘肽过氧化物酶; ACO5, ACC氧化酶; ACS6, 1-氨基环丙烷-1-羧酸合成酶; PG, 多聚半乳糖醛酸酶。
Fig.1 Patterns of interaction of ROS, hormones and corresponding genes
CAT1, Catalase 1; GPX6, Glutathione peroxidase 6; ACO5, ACC oxidase 5; ACS6, 1-amino cyclopropane-1-carboxylic acid synthase; PG, Polygalacturonase.

5 问题与展望

国内外学者对ROS参与调控植物生长发育已经进行了大量的研究, 对其调控果实衰老成熟也有了初步的结果; 但是仍有许多问题亟待进一步阐释。随着学者对ROS的深入研究, 发现无论是呼吸跃变型果实还是非呼吸跃变型果实, ROS均能参与果实内部一系列重要的生理生化过程从而调控果实成熟, 但是ROS参与调控果实成熟的机制目前尚不清楚。例如, ROS在调控呼吸跃变型和非呼吸跃变型果实衰老成熟之间有哪些差异?ROS在果实成熟过程中都参与了哪些生化反应, 以及ROS在这些生化反应中是如何代谢的?ROS与基因之间是怎样相互作用共同调控果实衰老成熟?ROS和钙离子之间是怎么精细调控果实软化后熟?ROS与基因之间相互作用调控果实衰老成熟研究仍处于探索阶段。虽然ROS与部分基因或者基因家族在调控果实衰老成熟方面已经进行了初步探索, 但是具体的信号通路和调控机制尚不明了, 这些问题在今后的研究中亟待解决。

(责任编辑 张 韵)

参考文献
[1] MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6): 300-309. [本文引用:2]
[2] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467. [本文引用:1]
[3] DASGUPTA N, BISWAS P, KUMAR R, et al. RETRACTED ARTICLE: Antioxidants and ROS scavenging ability in ten Darjeeling tea clones may serve as markers for selection of potentially adapted clones against abiotic stress[J]. Physiology and Molecular Biology of Plants, 2013, 19(3): 421-433. [本文引用:1]
[4] PANDEY V P, SINGH S, JAISWAL N, et al. Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 98: 98-105. [本文引用:2]
[5] TSUKAGOSHI H, BUSCH W, BENFEY P N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root[J]. Cell, 2010, 143(4): 606-616. [本文引用:1]
[6] DENG X P, CHENG Y J, WU X B, et al. Exogenous hydrogen peroxide positively influences root growth and exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings[J]. Australian Journal of Crop Science, 2012, 6(11): 1572-1578. [本文引用:1]
[7] LIAO W B, HUANG G B, YU J H, et al. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development[J]. Plant Physiology and Biochemistry, 2012, 58: 6-15. [本文引用:1]
[8] QUAN L J, ZHANG B, SHI W W, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2-18. [本文引用:2]
[9] FASOLI M, DAL SANTO S, ZENONI S, et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program[J]. The Plant Cell, 2012, 24(9): 3489-3505. [本文引用:1]
[10] GUO D L, XI F F, YU Y H, et al. Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’ and its early-ripening mutant ‘Fengzao’[J]. BMC Genomics, 2016, 17(1): 1-17. [本文引用:2]
[11] MØLLER I M, JENSEN P E, HANSSON A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58: 459-481. [本文引用:1]
[12] SMIRNOFF N, ARNAUD D. Hydrogen peroxide metabolism and functions in plants[J]. New Phytologist, 2019, 221(3): 1197-1214. [本文引用:1]
[13] BHATTACHARJEE S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants[J]. Current Science, 2005, 89(7): 1113-1121. [本文引用:1]
[14] SLESAK I, LIBIK M, KARPINSKA B, et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses[J]. Acta Biochimica Polonica, 2007, 54(1): 39-50. [本文引用:1]
[15] FOYER C H, LOPEZ-DELGADO H, DAT J F, et al. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiologia Plantarum, 1997, 100(2): 241-254. [本文引用:1]
[16] 林毅雄, 林艺芬, 陈艺晖, . 过氧化氢对采后龙眼果实贮藏品质的影响[J]. 食品科学, 2016, 37(22): 244-248.
LIN Y X, LIN Y F, CHEN Y H, et al. Effects of hydrogen peroxide on quality of harvested longan fruits during storage[J]. Food Science, 2016, 37(22): 244-248. (in Chinese with English abstract) [本文引用:1]
[17] MARINHO H S, REAL C, CYRNE L, et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors[J]. Redox Biology, 2014, 2: 535-562 [本文引用:1]
[18] HODGES D M, FORNEY C F. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves[J]. Journal of Experimental Botany, 2000, 51(344): 645-655. [本文引用:1]
[19] HUAN C, JIANG L, AN X J, et al. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening[J]. Plant Physiology and Biochemistry, 2016, 104: 294-303. [本文引用:2]
[20] PILATI S, BRAZZALE D, GUELLA G, et al. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin[J]. BMC Plant Biology, 2014, 14: 87. [本文引用:1]
[21] LIN Y F, LIN H T, ZHANG S, et al. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit[J]. Postharvest Biology and Technology, 2014, 96: 42-48. [本文引用:1]
[22] LIN Y F, LIN H T, LIN Y X, et al. The roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested longan fruit[J]. Postharvest Biology and Technology, 2016, 111: 53-61. [本文引用:1]
[23] TODD J F, PALIYATH G, THOMPSON J E. Characteristics of a membrane-associated lipoxygenase in tomato fruit[J]. Plant Physiology, 1990, 94(3): 1225-1232. [本文引用:1]
[24] JIMENEZ A, CREISSEN G, KULAR B, et al. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening[J]. Planta, 2002, 214(5): 751-758. [本文引用:1]
[25] KUMAR V, IRFAN M, GHOSH S, et al. Fruit ripening mutants reveal cell metabolism and redox state during ripening[J]. Protoplasma, 2016, 253(2): 581-594. [本文引用:4]
[26] GUO D L, WANG Z G, LI Q, et al. Hydrogen peroxide treatment promotes early ripening of Kyoho grape[J]. Australian Journal of Grape and Wine Research, 2019, 25(3): 357-362. [本文引用:1]
[27] 郭丽丽, 席飞飞, 余义和, . 核黄素处理促进‘巨峰’葡萄提早成熟的研究[J]. 园艺学报, 2017, 44(10): 1861-1870.
GUO L L, XI F F, YU Y H, et al. Studies of the riboflavin treatment for promoting the early ripening of ‘Kyoho’ Grape berry[J]. Acta Horticulturae Sinica, 2017, 44(10): 1861-1870. (in Chinese with English abstract) [本文引用:1]
[28] INUPAKUTIKA M A, SENGUPTA S, DEVIREDDY A R, et al. The evolution of reactive oxygen species metabolism[J]. Journal of Experimental Botany, 2016, 67(21): 5933-5943. [本文引用:1]
[29] DUAN X W, ZHANG H Y, ZHANG D D, et al. Role of hydroxyl radical in modification of cell wall polysaccharides and aril breakdown during senescence of harvested longan fruit[J]. Food Chemistry, 2011, 128(1): 203-207. [本文引用:1]
[30] CHENG G P, DUAN X W, SHI J, et al. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening[J]. Food Chemistry, 2008, 109(2): 319-324. [本文引用:1]
[31] ACHARD P, RENOU J P, BERTHOMÉ R, et al. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Current Biology, 2008, 18(9): 656-660. [本文引用:1]
[32] KUMAR R, KHURANA A, SHARMA A K. Role of plant hormones and their interplay in development and ripening of fleshy fruits[J]. Journal of Experimental Botany, 2014, 65(16): 4561-4575. [本文引用:1]
[33] FORLANI S, MASIERO S, MIZZOTTI C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens[J]. Journal of Experimental Botany, 2019, 70(11): 2993-3006. [本文引用:1]
[34] ZHANG H B, LI A, ZHANG Z J, et al. Ethylene response factor TERF1, regulated by ETHYLENE-INSENSITIVE3-like factors, functions in reactive oxygen species (ROS) scavenging in tobacco ( Nicotiana tabacum L. )[J]. Scientific Reports, 2016, 6: 29948. [本文引用:1]
[35] MASIA A. Superoxide dismutase and catalase activities in apple fruit during ripening and post-harvest and with special reference to ethylene[J]. Physiologia Plantarum, 1998, 104(4): 668-672. [本文引用:1]
[36] WANG L B, WANG L, ZHANG Z, et al. Genome-wide identification and comparative analysis of the superoxide dismutase gene family in pear and their functions during fruit ripening[J]. Postharvest Biology and Technology, 2018, 143: 68-77. [本文引用:1]
[37] MONDAL K, SHARMA N S, MALHOTRA S P, et al. Antioxidant systems in ripening tomato fruits[J]. Biologia Plantarum, 2004, 48(1): 49-53. [本文引用:1]
[38] LARRIGAUDIÈRE C, VILAPLANA R, SORIA Y, et al. Oxidative behaviour of Blanquilla pears treated with 1-methylcyclopropene during cold storage[J]. Journal of the Science of Food and Agriculture, 2004, 84(14): 1871-1877. [本文引用:1]
[39] WANG B G, WANG J H, FENG X Y, et al. Effects of 1-MCP and exogenous ethylene on fruit ripening and antioxidants in stored mango[J]. Plant Growth Regulation, 2008, 57(2): 185-192. [本文引用:1]
[40] HURR B M, HUBER D J, VALLEJOS C E, et al. Ethylene-induced overproduction of reactive oxygen species is responsible for the development of watersoaking in immature cucumber fruit[J]. Journal of Plant Physiology, 2013, 170(1): 56-62. [本文引用:1]
[41] LI T T, LI Z R, HU K D, et al. Hydrogen sulfide alleviates kiwifruit ripening and senescence by antagonizing effect of ethylene[J]. Hortscience, 2017, 52(11): 1556-1562. [本文引用:1]
[42] 陈昆松, 许文平. 脂氧合酶、茉莉酸和水杨酸对猕猴桃果实后熟软化进程中乙烯生物合成的调控[J]. 植物生理学报, 2000, 26(6): 507.
CHEN K S, XU W P. Regulations of lipoxygenase, jasmonic acid and salicylic acid on ethylene biosynthesis in ripening kiwifruit[J]. Acta Phytophysiologica Sinica, 2000, 26(6): 507. (in Chinese) [本文引用:1]
[43] YE N H, ZHU G H, LIU Y G, et al. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress[J]. Plant & Cell Physiology, 2011, 52(4): 689-698. [本文引用:2]
[44] GUAN L M, ZHAO J, SCANDALIOS J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response[J]. The Plant Journal: for Cell and Molecular Biology, 2000, 22(2): 87-95. [本文引用:1]
[45] 李红卫, 韩涛, 李丽萍, . ABA、GA3处理对冬枣采后果肉活性氧代谢的影响[J]. 园艺学报, 2005, 32(5): 793-797.
LI H W, HAN T, LI L P, et al. Effect of ABA and GA3 treatments on the metabolism of active oxygen species in cold stored ‘Brumal Jujube’ flesh[J]. Acta Horticulturae Sinica, 2005, 32(5): 793-797. (in Chinese with English abstract) [本文引用:1]
[46] WANG J F, ZHANG L, CAO Y Y, et al. CsATAF1 positively regulates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber[J]. Plant and Cell Physiology, 2018, 59(5): 930-945. [本文引用:1]
[47] CHOUDHARY R, SAROHA A E, SWARNKAR P L. Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in Syzygium cumini plant[J]. Journal of Food Science and Technology, 2012, 49(5): 649-652. [本文引用:1]
[48] ZHI H H, LIU Q Q, DONG Y, et al. Effect of calcium dissolved in slightly acidic electrolyzed water on antioxidant system, calcium distribution, and cell wall metabolism of peach in relation to fruit browning[J]. The Journal of Horticultural Science and Biotechnology, 2017, 92(6): 621-629. [本文引用:1]
[49] KHALIQ G, MUDA MOHAMED M T, GHAZALI H M, et al. Influence of gum Arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango ( Mangifera indica L. ) fruit stored under low temperature stress[J]. Postharvest Biology and Technology, 2016, 111: 362-369. [本文引用:1]
[50] KANG R Y, YU Z F, LU Z X. Effect of coating and intermittent warming on enzymes, soluble pectin substances and ascorbic acid of Prunus persica(cv. Zhonghuashoutao) during refrigerated storage[J]. Food Research International, 2005, 38(3): 331-336. [本文引用:1]
[51] BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Annals of Botany, 2003, 91: 179-194. [本文引用:1]
[52] 段风琴. 壶瓶枣裂果的钙素营养生理及施钙效果研究[D]. 太谷: 山西农业大学, 2016.
DUAN F Q. Influence of calcium on fruit cracking of jujube ‘Huping’ and its physiological mechanism[D]. Taigu: Shanxi Agricultural University, 2016. (in Chinese with English abstract) [本文引用:1]
[53] KOU X H, GUO W L, GUO R Z, et al. Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv. “Huang guan” during storage[J]. Food and Bioprocess Technology, 2014, 7(3): 671-681. [本文引用:1]
[54] KOU X H, WU M S, LI L, et al. Effects of CaCl2 dipping and pullulan coating on the development of brown spot on ‘Huangguan’ pears during cold storage[J]. Postharvest Biology and Technology, 2015, 99: 63-72. [本文引用:1]
[55] 韩絮舟, 吕静祎, 白琳, . 采后氯化钙处理对红树莓保鲜的影响[J]. 食品工业科技, 2020, 41(6): 233-238.
HAN X Z, LYU J Y, BAI L, et al. Effect of postharvest calcium chloride treatment on preservation of red raspberry[J]. Science and Technology of Food Industry, 2020, 41(6): 233-238. (in Chinese with English abstract) [本文引用:1]
[56] 赵妍, 杨超, 王若兰, . CaCl2处理对草莓采后品质及灰霉病害的影响[J]. 食品工业科技, 2013, 34(13): 313-316.
ZHAO Y, YANG C, WANG R L, et al. Influence of CaCl2 on quality and gray mold rot in postharvest strawberry fruit[J]. Science and Technology of Food Industry, 2013, 34(13): 313-316. (in Chinese with English abstract) [本文引用:1]
[57] 韩斯, 孟宪军, 汪艳群, . 氯化钙处理对速冻蓝莓冻藏期品质的影响[J]. 食品科学, 2014, 35(22): 310-314.
HAN S, MENG X J, WANG Y Q, et al. Effect of calcium chloride treatment on quality of quick frozen blueberry during frozen storage[J]. Food Science, 2014, 35(22): 310-314. (in Chinese with English abstract) [本文引用:1]
[58] CHOUDHURY F K, RIVERO R M, BLUMWALD E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867. [本文引用:1]
[59] HAMEED A, GOHER M, IQBAL N. Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves[J]. Biologia Plantarum, 2013, 57(2): 370-374. [本文引用:1]
[60] PILATI S, PERAZZOLLI M, MALOSSINI A, et al. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison[J]. BMC Genomics, 2007, 8(1): 1-22. [本文引用:1]
[61] APEL K, HIRT H. REACTIVE OXYGEN SPECIES: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373-399. [本文引用:1]
[62] ENDO H, OSE K, BAI J H, et al. Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume ( Prunus mume) fruit during low temperature storage[J]. Scientia Horticulturae, 2019, 246: 550-556. [本文引用:1]
[63] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. [本文引用:1]
[64] GAO H, ZHANG Z K, CHAI H K, et al. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit[J]. Postharvest Biology and Technology, 2016, 118: 103-110. [本文引用:2]
[65] ZHENG X L, TIAN S P, MENG X H, et al. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature[J]. Food Chemistry, 2007, 104(1): 156-162. [本文引用:1]
[66] MARINO D, DUNAND C, PUPPO A, et al. A burst of plant NADPH oxidases[J]. Trends in Plant Science, 2012, 17(1): 9-15. [本文引用:1]
[67] ZHU Z, CHEN Y L, SHI G Q, et al. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system[J]. Food Chemistry, 2017, 219: 179-184. [本文引用:1]
[68] MUÑOZ-VARGAS M A, GONZÁLEZ-GORDO S, CAÑAS A, et al. Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper ( Capsicum annuum L. ) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO[J]. Nitric Oxide, 2018, 81: 36-45. [本文引用:1]
[69] CHAKI M, ÁLVAREZ DE MORALES P, RUIZ C, et al. Ripening of pepper ( Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration[J]. Annals of Botany, 2015, 116(4): 637-647. [本文引用:1]
[70] LI T, ZHANG J, GAO X Y, et al. The molecular mechanism for the ethylene regulation of postharvest button mushrooms maturation and senescence[J]. Postharvest Biology and Technology, 2019, 156: 110930. [本文引用:1]
[71] ZERMIANI M, ZONIN E, NONIS A, et al. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits[J]. Journal of Experimental Botany, 2015, 66(22): 7255-7270. [本文引用:1]
[72] MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498. [本文引用:1]
[73] ZHANG Y, GONG Y, CHEN L, et al. Hypotaurine delays senescence of peach fruit by regulating reactive oxygen species metabolism[J]. Scientia Horticulturae, 2019, 253: 295-302. [本文引用:1]
[74] GUO D L, ZHANG G H. A new early-ripening grape cultivar-‘fengzao’[J]. Acta Horticulturae, 2015(1082): 153-156. [本文引用:1]
[75] CHIANG C M, CHIEN H L, CHEN L F O, et al. Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana[J]. Biologia Plantarum, 2015, 59(2): 305-315. [本文引用:1]