浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1316-1325.DOI: 10.3969/j.issn.1004-1524.2022.06.22
李燕乐1(), 钟怀荣2, 宣宁2, 张燕2, 陈高2,*(
), 季祥1,*(
)
收稿日期:
2021-01-29
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
陈高,季祥
作者简介:
季祥,E-mail: jixiang@imust.cn基金资助:
LI Yanle1(), ZHONG Huairong2, XUAN Ning2, ZHANG Yan2, CHEN Gao2,*(
), JI Xiang1,*(
)
Received:
2021-01-29
Online:
2022-06-25
Published:
2022-06-30
Contact:
CHEN Gao,JI Xiang
摘要:
磷酸泛酰巯基乙胺基转移酶(phosphopantetheinyl transferases,PPTase)是细菌脂肪酸合成中的关键酶。本研究利用同源重组手段构建集胞藻PPTase基因(slr0495)过量表达重组质粒,在集胞藻PCC6803中进行表达研究,并在DNA和RNA水平进行验证,利用气相色谱-质谱联用仪(GC-MS)检测不同条件下突变藻株脂肪酸组分及含量。结果表明:在温度为30 ℃、光照强度为50 μmol ·m-2 · s-1培养条件下,过量表达slr0495基因突变藻株中C12:0、C16:0和C18:0的含量分别为1. 31 mg · g-1、8.07 mg · g-1和1.35 mg · g-1,比野生型藻株分别提高了23.58%、25.31%和13.45%;在温度为20 ℃、50% NaNO3浓度、光照强度为50 μmol · m-2 · s-1培养条件下,与野生型相比,突变藻株中C16:0和C18:0含量分别提高了44.71%和41.51%。以上结果表明,过表达slr0495基因增加了集胞藻PCC6803中长链饱和脂肪酸的含量,并且在低温(20 ℃)和缺氮(50% NaNO3)双重胁迫培养条件下中长链饱和脂肪酸含量得到进一步提高。本研究为探究slr0495基因功能以及在逆境中基因产生的应激反应提供了理论依据,为微藻高产多不饱和脂肪酸代谢研究奠定了基础。
中图分类号:
李燕乐, 钟怀荣, 宣宁, 张燕, 陈高, 季祥. 磷酸泛酰巯基乙胺基转移酶基因过量表达对集胞藻PCC6803脂肪酸合成的影响[J]. 浙江农业学报, 2022, 34(6): 1316-1325.
LI Yanle, ZHONG Huairong, XUAN Ning, ZHANG Yan, CHEN Gao, JI Xiang. Effects of over expression of phosphopantetheinyl transferases gene on fatty acid synthesis in Synechocystis sp. PCC6803[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1316-1325.
引物 Primers | 序列 Primer sequences(5'→3') |
---|---|
Pcpc560-F | AATGTCGACACCTGTAGAGAAGAGTCCC |
Pcpc560-R | TGAATTAATCTCCTACTTGAC |
slr0646U-F | CGCCTCGAGACGGCAATTGGTTATCACT |
slr0646U-R | CCAGTCGACACGCTGCAATTTGACCTAT |
slr0646D-F | ATACCGCGGAAACAACGCCGCTGACGAA |
slr0646D-R | GGCGAGCTCTACAAGAAGCAGAGGAGTT |
slr0495-F | AGTAGGAGATTAATTCAATGCTCCCCCAGCCCCAAA |
slr0495-Flag-R | GGCGAATTCCTACTTATCGTCGTCATCCTTGTAATC |
slr0495-Flag-RT-F | GATACAAACCATTGGCGA |
slr0495-Flag-RT-R | TTGGAACTAAGTAACGGG |
表1 引物序列
Table 1 Primer used in this study
引物 Primers | 序列 Primer sequences(5'→3') |
---|---|
Pcpc560-F | AATGTCGACACCTGTAGAGAAGAGTCCC |
Pcpc560-R | TGAATTAATCTCCTACTTGAC |
slr0646U-F | CGCCTCGAGACGGCAATTGGTTATCACT |
slr0646U-R | CCAGTCGACACGCTGCAATTTGACCTAT |
slr0646D-F | ATACCGCGGAAACAACGCCGCTGACGAA |
slr0646D-R | GGCGAGCTCTACAAGAAGCAGAGGAGTT |
slr0495-F | AGTAGGAGATTAATTCAATGCTCCCCCAGCCCCAAA |
slr0495-Flag-R | GGCGAATTCCTACTTATCGTCGTCATCCTTGTAATC |
slr0495-Flag-RT-F | GATACAAACCATTGGCGA |
slr0495-Flag-RT-R | TTGGAACTAAGTAACGGG |
图2 slr0646UD 同源重组平台构建及检测 A,集胞藻PCC6803基因组DNA电泳结果;B,slr0646UD DNA水平PCR扩增结果;C,slr0646UD 同源重组平台质粒构建图;WT,集胞藻PCC6803。
Fig. 2 Construction process and detection of homologous recombination platform slr0646UD A, Agorase gel electrophoresis of genome from Synechocystis sp. PCC6803; B, The identification of slr0646UD platform in DNA level; C, Construction map of slr0646UD homologous recombination platform; WT, Synechocystis sp. PCC6803.
图3 突变株slr0495(+) DAN和RNA水平鉴定 A,同源重组质粒slr0495 (+)构建图谱;B,突变株slr0495(+) PCR扩增检测图;C,突变株slr0495(+) RNA水平鉴定;WT,集胞藻PCC6803;M,突变株slr0495(+)。
Fig. 3 The identification of slr0495(+) mutant in DNA and RNA level A, Construction of homologous recombinant plasmid slr0495(+); B, PCR amplification of mutant slr0495 (+); C, The identification of slr0495(+) mutant in RNA level; WT, Synechocystis sp. PCC6803; M, Mutant strain of slr0495(+).
图4 温度及氮浓度对藻株生长速率的影响 A,30 ℃、50 μmol· m-2·s-1、不同氮浓度条件下的生长曲线;B,20 ℃、50 μmol·m-2·s-1、不同氮浓度条件下的生长曲线;WT,集胞藻PCC6803;M,突变株slr0495(+)。
Fig. 4 Effects of temperature and nitrogen concentration on growth rate of algae A, Growth curves at 30 ℃, 50 μmol·m-2·s-1 and different nitrogen concentrations; B, Growth curves at 20 ℃,50 μmol·m-2·s-1 and different nitrogen concentrations; WT, Synechocystis sp. PCC6803; M, The mutant strain of slr0495(+).
图5 叶绿素a含量 A,30 ℃、50 μmol·m-2·s-1不同氮浓度培养条件下叶绿素a含量;B,20 ℃、50 μmol·m-2·s-1不同氮浓度培养条件下类叶绿素a含量;WT,集胞藻PCC6803;M,突变株slr0495(+)。
Fig. 5 Content of chlorophyll a A, Chlorophyll a contents under different nitrogen concentrations at 30 ℃, 50 μmol·m-2·s-1; B, Chlorophyll a content under different nitrogen concentrations at 20 ℃, 50 μmol·m-2·s-1; WT, Synechocystis sp. PCC6803; M, Mutant strain of slr0495(+).
图6 类胡萝卜素含量 A,30 ℃、50 μmol·m-2·s-1不同氮浓度培养条件下类胡萝卜素含量;B,20 ℃、50 μmol·m-2·s-1不同氮浓度培养条件下胡萝卜素含量。
Fig. 6 Content of carotenoids A, Carotenoid contents under different nitrogen concentrations at 30 ℃, 50 μmol·m-2·s-1; B, Carotenoid contents under different nitrogen concentrations at 20 ℃, 50 μmol·m-2·s-1.
脂肪酸Fatty acid | WT 30 ℃ 100% N 50% N | M 30 ℃ 100% N 50% N | WT 20 ℃ 100% N 50% N | M 20 ℃ 100% N 50% N | ||||
---|---|---|---|---|---|---|---|---|
TFA | 13.42 ± 0.63 | 15.25 ± 0.47 | 19.69 ± 1.02 | 22.43 ± 1.17 | 24.52 ±1.12 | 29.44 ± 1.83 | 22.31 ± 1.47 | 30.44 ± 1.75 |
C11:0 | 6.59 ± 0.27 | 6.96 ± 0.32 | 3.27 ± 0.17 | 3.85 ± 0.23 | 6.79 ± 0.43 | 5.96 ± 0.21 | 5.66 ± 0.32 | 6.48 ± 0.49 |
C12:0 | 1.06 ± 0.09 | 1.24 ± 0.12 | 1.31 ± 0.16 | 1.43 ± 0.11 | 1.53 ± 0.07 | 1.57 ± 0.13 | 1.62 ± 0.22 | 1.89 ± 0.16 |
C16:0 | 6.44 ± 0.32 | 6.75 ± 0.27 | 8.07 ± 0.23 | 8.97 ± 0.12 | 7.94 ± 0.65 | 8.41 ± 0.21 | 9.45 ± 0.39 | 12.17 ± 0.63 |
C18:0 | 1.19 ± 0.07 | 1.24 ± 0.23 | 1.35 ± 0.03 | 1.41± 0.07 | 1.54 ± 0.13 | 1.59 ± 0.11 | 1.71 ± 0.15 | 2.25± 0.07 |
C18:3 | 3.02 ± 0.27 | 3.27 ± 0.21 | 3.61 ± 0.15 | 3.93 ± 0.23 | 0.37 ± 0.07 | 0.56 ± 0.07 | 4.01 ± 0.12 | 4.34 ± 0.21 |
表2 不同胁迫条件下野生型和突变株slr0495(+)脂肪酸组分的含量
Table 2 Fatty acid contents of wild type and slr0495(+) mutants under different conditions mg·g-1
脂肪酸Fatty acid | WT 30 ℃ 100% N 50% N | M 30 ℃ 100% N 50% N | WT 20 ℃ 100% N 50% N | M 20 ℃ 100% N 50% N | ||||
---|---|---|---|---|---|---|---|---|
TFA | 13.42 ± 0.63 | 15.25 ± 0.47 | 19.69 ± 1.02 | 22.43 ± 1.17 | 24.52 ±1.12 | 29.44 ± 1.83 | 22.31 ± 1.47 | 30.44 ± 1.75 |
C11:0 | 6.59 ± 0.27 | 6.96 ± 0.32 | 3.27 ± 0.17 | 3.85 ± 0.23 | 6.79 ± 0.43 | 5.96 ± 0.21 | 5.66 ± 0.32 | 6.48 ± 0.49 |
C12:0 | 1.06 ± 0.09 | 1.24 ± 0.12 | 1.31 ± 0.16 | 1.43 ± 0.11 | 1.53 ± 0.07 | 1.57 ± 0.13 | 1.62 ± 0.22 | 1.89 ± 0.16 |
C16:0 | 6.44 ± 0.32 | 6.75 ± 0.27 | 8.07 ± 0.23 | 8.97 ± 0.12 | 7.94 ± 0.65 | 8.41 ± 0.21 | 9.45 ± 0.39 | 12.17 ± 0.63 |
C18:0 | 1.19 ± 0.07 | 1.24 ± 0.23 | 1.35 ± 0.03 | 1.41± 0.07 | 1.54 ± 0.13 | 1.59 ± 0.11 | 1.71 ± 0.15 | 2.25± 0.07 |
C18:3 | 3.02 ± 0.27 | 3.27 ± 0.21 | 3.61 ± 0.15 | 3.93 ± 0.23 | 0.37 ± 0.07 | 0.56 ± 0.07 | 4.01 ± 0.12 | 4.34 ± 0.21 |
[1] |
QIU Y J, FREAR C, CHEN S L, et al. Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion[J]. Renewable Energy, 2020, 149: 691-700.
DOI URL |
[2] |
MATHIMANI T, SENTHIL KUMAR T, CHANDRASEKAR M, et al. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel[J]. Renewable Energy, 2017, 105: 637-646.
DOI URL |
[3] | CARDOZO K H M, GUARATINI T, BARROS M P, et al. Metabolites from algae with economical impact[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 146(1/2): 60-78. |
[4] |
YARNOLD J, KARAN H K, OEY M, et al. Microalgal aquafeeds as part of a circular bioeconomy[J]. Trends in Plant Science, 2019, 24(10): 959-970.
DOI URL |
[5] |
SOLOVCHENKO A E. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses[J]. Russian Journal of Plant Physiology, 2012, 59(2): 167-176.
DOI URL |
[6] |
BROWN M R, JEFFREY S W, VOLKMAN J K, et al. Nutritional properties of microalgae for mariculture[J]. Aquaculture, 1997, 151(1/2/3/4): 315-331.
DOI URL |
[7] |
SÁ M, FERRER-LEDO N, WIJFFELS R, et al. Monitoring of eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica[J]. Algal Research, 2020, 45: 101766.
DOI URL |
[8] |
JIANG H M, GAO K S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (bacillariophyceae)1[J]. Journal of Phycology, 2004, 40(4): 651-654.
DOI URL |
[9] |
LEU S, BOUSSIBA S. Advances in the production of high-value products by microalgae[J]. Industrial Biotechnology, 2014, 10(3): 169-183.
DOI URL |
[10] |
LIU Y M, CUI Y L, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin[J]. Algal Research, 2019, 44: 101679.
DOI URL |
[11] |
BELD J, SONNENSCHEIN E C, VICKERY C R, et al. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life[J]. Natural Product Reports, 2014, 31(1): 61-108.
DOI URL |
[12] |
LAMBALOT R H, GEHRING A M, FLUGEL R S, et al. A new enzyme superfamily: the phosphopantetheinyl transferases[J]. Chemistry & Biology, 1996, 3(11): 923-936.
DOI URL |
[13] | 王月月. 工业链霉菌中磷酸泛酰巯基乙胺基转移酶的研究及应用[D]. 杭州: 浙江大学, 2015. |
WANG Y Y. Study and application of phosphopantetheinvl transferases from industrial Streptomvces[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[14] | 路晓媛, 钟怀荣, 夏志洁, 等. 集胞藻酰基载体蛋白基因过量表达对脂肪酸合成的影响[J]. 浙江农业学报, 2020, 32(7): 1253-1262. |
LU X Y, ZHONG H R, XIA Z J, et al. Effects of overexpression of acyl carrier protein gene in Synechocystis on fatty acids synthesis[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1253-1262. (in Chinese with English abstract) | |
[15] |
STANIER R Y, KUNISAWA R, MANDEL M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2): 171-205.
DOI URL |
[16] |
CHEN G, QU S J, WANG Q, et al. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances Omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803[J]. Biotechnology for Biofuels, 2014, 7(1): 32.
DOI URL |
[17] |
CHEN G, CHEN J, HE Q F, et al. Functional expression of the Arachis hypogaea L. acyl-ACP thioesterases AhFatA and AhFatB enhances fatty acid production in Synechocystis sp. PCC6803[J]. Energies, 2017, 10(12): 2093.
DOI URL |
[18] | XUE Y, ZHANG Y, CHENG D, et al. Genetically engineeringSynechocystissp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolitep-coumaric acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9449-9454. |
[19] |
SUSHCHIK N N, KALACHEVA G S, ZHILA N O, et al. A temperature dependence of the intra- and extracellular fatty-acid composition of green algae and cyanobacterium[J]. Russian Journal of Plant Physiology, 2003, 50(3): 374-380.
DOI URL |
[20] |
ZHANG M, BARG R, YIN M G, et al. Modulated fatty acid desaturation via overexpression of two distinct Omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J]. The Plant Journal, 2005, 44(3): 361-371.
DOI URL |
[21] |
LI Y, XU X, DIETRICH M, et al. Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(2/3): 96-101.
DOI URL |
[22] |
MILLER R, WU G X, DESHPANDE R R, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism[J]. Plant Physiology, 2010, 154(4): 1737-1752.
DOI URL |
[23] |
YANG Z K, NIU Y F, MA Y H, et al. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation[J]. Biotechnology for Biofuels, 2013, 6(1): 1-14.
DOI URL |
[24] |
CHATTOPADHYAY M K. Mechanism of bacterial adaptation to low temperature[J]. Journal of Biosciences, 2006, 31(1): 157-165.
DOI URL |
[25] | 庞玥, 张树林, 毕相东. 蓝藻光合膜蛋白复合体结构与功能研究进展[J]. 天津农学院学报, 2013, 20(3): 45-51. |
PANG Y, ZHANG S L, BI X D. Progress of structure and function of photosynthetic membrane protein complexes in cyanobacteria[J]. Journal of Tianjin Agricultural University, 2013, 20(3): 45-51. (in Chinese with English abstract) |
[1] | 宋碧清, 杨晓东, 郑昀晔, 王国平, 徐盛春, 赵燕, 赵珊珊, 马宇轩, 李素娟. 不同烟草品种烟籽油理化性质及脂肪酸和挥发性成分评价[J]. 浙江农业学报, 2022, 34(6): 1152-1161. |
[2] | 李文略, 骆霞虹, 柳婷婷, 金关荣, 葛亚英, 陈常理, 安霞. 不同类型向日葵籽粒的理化性质[J]. 浙江农业学报, 2022, 34(4): 671-677. |
[3] | 汤佳宁, 王永侠, 刘金松, 曾新福, 杨彩梅. 中链脂肪酸及其酯对致病菌的抑菌作用[J]. 浙江农业学报, 2021, 33(9): 1611-1616. |
[4] | 路晓媛, 钟怀荣, 夏志洁, 曹月蕾, 陈高, 戴美学. 集胞藻酰基载体蛋白基因过量表达对脂肪酸合成的影响[J]. 浙江农业学报, 2020, 32(7): 1253-1262. |
[5] | 李美霖, 陈宇眺, 洪晓富, 乔宇颖, 王青霞, 陈喜靖, 沈阿林, 喻曼. 不同氮肥管理方式对稻田土壤微生物群落结构的影响[J]. 浙江农业学报, 2020, 32(2): 308-316. |
[6] | 刘永涛, 董靖, 夏京津, 曹翠宇, 胥宁, 杨秋红, 艾晓辉. 不同饲料对稻田养殖克氏原螯虾肌肉质构特性和营养品质的影响[J]. 浙江农业学报, 2019, 31(12): 1996-2004. |
[7] | 胡心意, 傅庆林, 刘琛, 丁能飞, 林义成. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202-1210. |
[8] | 姜聪1,张青2,姚忠华2,许志刚3,楼兵干1,*. 黑李溃疡病病原菌的分离与鉴定[J]. 浙江农业学报, 2014, 26(4): 971-. |
[9] | 李春慧;孟晓琴;刘博涛;陈国顺;吴润;蒲万霞;*. 活化卵白蛋白对断奶仔猪结肠内SCFA的影响[J]. , 2014, 26(2): 0-297302. |
[10] | 王兵;竺利红;赵宇华;王欣;孙东昌;*. 基因工程菌发酵秸秆水解液产生物柴油[J]. , 2014, 26(2): 0-403409. |
[11] | 徐幼平;蔡新忠;祝小祥;*. 水旱作物轮作田块土壤中微生物群落结构的PLFA法比较分析[J]. , 2013, 25(5): 0-1061. |
[12] | 官雪芳;林碧芬;徐庆贤;钱蕾;林斌;* . 种植年限对土壤性状、微生物群落及脐橙果实品质的影响[J]. , 2012, 24(1): 0-113. |
[13] | 陈艳乐;叶子弘;蒋林树;*. 黄牛瘤胃中多不饱和脂肪酸氢化的影响因素[J]. , 2010, 22(3): 0-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||