浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1144-1153.DOI: 10.3969/j.issn.1004-1524.2023.05.18
陈倩倩1,2(), 陶文扬2, 郑美瑜2, 马子甲1,2, 王璐2, 陆胜民1,2,*(
)
收稿日期:
2022-07-01
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
陈倩倩(1996—),女,浙江桐乡人,硕士研究生,研究方向为果品加工。E-mail:996683796@qq.com
通讯作者:
*陆胜民,E-mail: 1010508971@qq.com
基金资助:
CHEN Qianqian1,2(), TAO Wenyang2, ZHENG Meiyu2, MA Zijia1,2, WANG Lu2, LU Shengmin1,2,*(
)
Received:
2022-07-01
Online:
2023-05-25
Published:
2023-06-01
摘要:
为了探究枇杷花的美白功效及其功能因子,以酪氨酸酶活性抑制率为指标,通过单因素和正交实验对枇杷花具有抑制酪氨酸酶活性的物质的醇提工艺进行了优化;通过静态吸附-解析和动态吸附-洗脱实验分别确定D101大孔树脂纯化工艺中吸附-解析平衡时间和最佳纯化工艺;对纯化物进行HPLC-MS分析,初步鉴定出主要化合物。结果表明,最佳的提取工艺为在料液比(m∶V)1∶20、50 ℃和50%乙醇体积分数条件下,进行重复3次,每次1 h,提取枇杷干花具有抑制酪氨酸酶活性的物质,粗提物得率为30.01%;D101树脂对粗提物的最佳吸附平衡时间为4.5 h,解析平衡时间为3.5 h;最佳纯化工艺为:上样浓度40 mg·mL-1,上样流速3 BV·h-1,洗脱剂为60%乙醇体积分数,洗脱速度4 BV·h-1,纯化物得率为4.39%;纯化物中共鉴定出137种成分,分为黄酮类物质、肉桂酸及其衍生物、苯及其衍生物等26个大类。对比中外文献报道,筛选出槲皮素、异鼠李素、对香豆酸等12种具有酪氨酸酶抑制活性的化合物。本研究为枇杷花在美白方面的应用提供理论基础。
中图分类号:
陈倩倩, 陶文扬, 郑美瑜, 马子甲, 王璐, 陆胜民. 基于体外酪氨酸酶抑制活性的枇杷花醇提纯化工艺优化及活性成分初步鉴定[J]. 浙江农业学报, 2023, 35(5): 1144-1153.
CHEN Qianqian, TAO Wenyang, ZHENG Meiyu, MA Zijia, WANG Lu, LU Shengmin. Optimization of ethanol extraction and purification process of loquat flowers based on in vitro tyrosinase inhibitory activity and preliminary identification of active components[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1144-1153.
试剂 Reagent/μL | 组别Group | |||
---|---|---|---|---|
A | B | C | D | |
磷酸缓冲液Phosphate buffer saline | 100 | 200 | 100 | 200 |
枇杷花提取物 | 2 | 2 | — | — |
Loquat flower extraction/(mg·mL-1) | ||||
DMSO | — | — | 2 | 2 |
酪氨酸酶溶液 | 100 | — | 100 | — |
Tyrosinase solution/( U·mL-1) |
表1 反应体系
Table 1 Reaction system
试剂 Reagent/μL | 组别Group | |||
---|---|---|---|---|
A | B | C | D | |
磷酸缓冲液Phosphate buffer saline | 100 | 200 | 100 | 200 |
枇杷花提取物 | 2 | 2 | — | — |
Loquat flower extraction/(mg·mL-1) | ||||
DMSO | — | — | 2 | 2 |
酪氨酸酶溶液 | 100 | — | 100 | — |
Tyrosinase solution/( U·mL-1) |
水平 Level | 因素Factors | |||
---|---|---|---|---|
A 温度 Temperature/ ℃ | B 提取次数/次 Extraction times | C 乙醇体积分数 Ethanol volume fraction/% | D 时间 Time/h | |
1 | 50 | 2 | 30 | 0.5 |
2 | 60 | 3 | 50 | 1.0 |
3 | 80 | 4 | 70 | 1.5 |
表2 基于体外酪氨酸酶活性抑制率的枇杷花提取工艺优化的正交试验因素及水平
Table 2 Orthogonal test factors and levels of loquat flower extraction process optimization based on in vitro tyrosinase inhibition rate
水平 Level | 因素Factors | |||
---|---|---|---|---|
A 温度 Temperature/ ℃ | B 提取次数/次 Extraction times | C 乙醇体积分数 Ethanol volume fraction/% | D 时间 Time/h | |
1 | 50 | 2 | 30 | 0.5 |
2 | 60 | 3 | 50 | 1.0 |
3 | 80 | 4 | 70 | 1.5 |
图1 提取时间(A)、乙醇体积分数(B)、提取温度(C)、提取次数(D)对枇杷花粗提物体外酪氨酸酶活性抑制率的影响 不同处理间没有相同小写字母表示差异显著(P<0.05)。
Fig.1 Effects of extraction time (A), ethanol volume fraction (B), extraction temperature (C), and extraction times (D) on in vitro tyrosinase inhibition rate of loquat flower extracts The values with different lowercase letters showed the significant difference (P<0.05).
实验号 Test number | 因素 Factors | 酪氨酸酶活性抑制率 Inhibition rate of tyrosinase activity/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 3 | 2 | 3 | 1 | 36.58 |
2 | 3 | 3 | 1 | 2 | 31.81 |
3 | 2 | 1 | 3 | 2 | 43.91 |
4 | 2 | 3 | 2 | 1 | 45.13 |
5 | 2 | 2 | 1 | 3 | 34.19 |
6 | 1 | 3 | 3 | 3 | 45.26 |
7 | 1 | 1 | 1 | 1 | 31.17 |
8 | 3 | 1 | 2 | 3 | 31.29 |
9 | 1 | 2 | 2 | 2 | 59.65 |
k1 | 45.36 | 35.46 | 32.39 | 37.63 | |
k2 | 41.08 | 43.48 | 45.36 | 45.12 | |
k3 | 33.23 | 40.73 | 41.92 | 36.92 | |
R | 12.13 | 8.02 | 12.97 | 8.20 |
表3 基于体外酪氨酸酶活性抑制率的枇杷花提取工艺优化的正交试验结果
Table 3 Orthogonal test results of loquat flower extraction optimization based on in vitro tyrosinase inhibition rate
实验号 Test number | 因素 Factors | 酪氨酸酶活性抑制率 Inhibition rate of tyrosinase activity/% | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 3 | 2 | 3 | 1 | 36.58 |
2 | 3 | 3 | 1 | 2 | 31.81 |
3 | 2 | 1 | 3 | 2 | 43.91 |
4 | 2 | 3 | 2 | 1 | 45.13 |
5 | 2 | 2 | 1 | 3 | 34.19 |
6 | 1 | 3 | 3 | 3 | 45.26 |
7 | 1 | 1 | 1 | 1 | 31.17 |
8 | 3 | 1 | 2 | 3 | 31.29 |
9 | 1 | 2 | 2 | 2 | 59.65 |
k1 | 45.36 | 35.46 | 32.39 | 37.63 | |
k2 | 41.08 | 43.48 | 45.36 | 45.12 | |
k3 | 33.23 | 40.73 | 41.92 | 36.92 | |
R | 12.13 | 8.02 | 12.97 | 8.20 |
图2 D101型大孔树脂对枇杷花粗提物中具有酪氨酸酶抑制活性物质的分批式吸附-解析动力学曲线
Fig.2 Static adsorption-elution kinetic curves of macroporous resin D101 to substances with tyrosinase inhibitory activity in loquat flower ethanol extract
上样液浓度 Concentration of loading solution/(mg·mL-1) | 泄漏点 Leakage point/BV | 吸附量 Adsorption capacity/mg |
---|---|---|
25 | 30 | 15.0×103 |
30 | 17 | 10.2×103 |
40 | 15 | 12.0×103 |
50 | 8 | 4.0×103 |
表4 上样液浓度对D101型大孔树脂动态吸附性能的影响
Table 4 Effect of sample solution concentrations on dynamic adsorption performance of macroporous resin D101
上样液浓度 Concentration of loading solution/(mg·mL-1) | 泄漏点 Leakage point/BV | 吸附量 Adsorption capacity/mg |
---|---|---|
25 | 30 | 15.0×103 |
30 | 17 | 10.2×103 |
40 | 15 | 12.0×103 |
50 | 8 | 4.0×103 |
图3 上样流速(A)、乙醇洗脱剂体积分数(B)、洗脱流速(C)对D101型大孔树脂中酪氨酸酶抑制活性物质洗脱效果的影响
Fig.3 Effect of sample flow rate (A), ethanol eluent volume fraction (B), and elution velocity (C) on desorption performance of tyrosinase inhibitory substances in macroporous resin D101
编号 Code | 物质名称 Substance name | 分子式 Molecular formula | 分子量 Molecular weight | 化学文摘社编号 Chemical Abstracts Service(CAS) | 保留时间 Retention time/ min |
---|---|---|---|---|---|
黄酮类化合物 Flavonoids | |||||
1 | 槲皮素Quercetin[ | C15H10O7 | 302.042 0 | 117-39-5 | 6.643 |
2 | 异鼠李素Isorhamnetin[ | C16H12O7 | 316.057 7 | 480-19-3 | 7.108 |
3 | 圣草酚Eriodictyol[ | C15 H12 O6 | 288.063 0 | 209-016-4 | 6.894 |
肉桂酸及其衍生物 Cinnamic acid and its derivatives | |||||
4 | 三香豆酰亚精胺Tricoumaroyl spermidine[ | C34H37N3O6 | 583.267 4 | NA | 9.236 |
5 | 双香豆酰亚精胺Dicoumaramide spermidine[ | C25H31N3O4 | 437.230 7 | NA | 9.225 |
6 | 咖啡酸乙酯Ethyl caffeate[ | C11H12O4 | 208.073 2 | 102-37-4 | 9.294 |
7 | 邻香豆酸2-Hydroxycinnamic acid[ | C9H8O3 | 164.047 2 | 614-60-8 | 5.88 |
8 | 香豆酸Coumaric acid[ | C9H8O3 | 164.047 2 | 614-60-8 | 10.271 |
9 | 反式-4-甲氧基肉桂酸trans-4-Methoxycinnamic acid[ | C10H10O3 | 178.062 9 | 943-89-5 | 7.181 |
10 | 阿魏酸Ferulic acid[ | C10H10O4 | 194.057 7 | 1 135-24-6 | 6.894 |
苯及其衍生物 Benzene and its derivatives | |||||
11 | 对甲氧基苯甲醛4-Methoxybenzaldehyde[ | C8H8O2 | 136.052 4 | 123-11-5 | 5.952 |
12 | 对甲氧基苯甲酸4-Anisic acid[ | C8H8O3 | 152.047 2 | 100-09-4 | 10.034 |
表5 全谱鉴定结果统计表
Table 5 Statistical table of full spectrum identification results
编号 Code | 物质名称 Substance name | 分子式 Molecular formula | 分子量 Molecular weight | 化学文摘社编号 Chemical Abstracts Service(CAS) | 保留时间 Retention time/ min |
---|---|---|---|---|---|
黄酮类化合物 Flavonoids | |||||
1 | 槲皮素Quercetin[ | C15H10O7 | 302.042 0 | 117-39-5 | 6.643 |
2 | 异鼠李素Isorhamnetin[ | C16H12O7 | 316.057 7 | 480-19-3 | 7.108 |
3 | 圣草酚Eriodictyol[ | C15 H12 O6 | 288.063 0 | 209-016-4 | 6.894 |
肉桂酸及其衍生物 Cinnamic acid and its derivatives | |||||
4 | 三香豆酰亚精胺Tricoumaroyl spermidine[ | C34H37N3O6 | 583.267 4 | NA | 9.236 |
5 | 双香豆酰亚精胺Dicoumaramide spermidine[ | C25H31N3O4 | 437.230 7 | NA | 9.225 |
6 | 咖啡酸乙酯Ethyl caffeate[ | C11H12O4 | 208.073 2 | 102-37-4 | 9.294 |
7 | 邻香豆酸2-Hydroxycinnamic acid[ | C9H8O3 | 164.047 2 | 614-60-8 | 5.88 |
8 | 香豆酸Coumaric acid[ | C9H8O3 | 164.047 2 | 614-60-8 | 10.271 |
9 | 反式-4-甲氧基肉桂酸trans-4-Methoxycinnamic acid[ | C10H10O3 | 178.062 9 | 943-89-5 | 7.181 |
10 | 阿魏酸Ferulic acid[ | C10H10O4 | 194.057 7 | 1 135-24-6 | 6.894 |
苯及其衍生物 Benzene and its derivatives | |||||
11 | 对甲氧基苯甲醛4-Methoxybenzaldehyde[ | C8H8O2 | 136.052 4 | 123-11-5 | 5.952 |
12 | 对甲氧基苯甲酸4-Anisic acid[ | C8H8O3 | 152.047 2 | 100-09-4 | 10.034 |
[1] | 关于弯曲乳杆菌等24种“三新食品”的公告(2019年第2号)[J]. 中国食品卫生杂志, 2019, 31(4): 365. |
Announcement on 24 “Three New Foods” including Lactobacillus curvatus(No. 2 of 2019)[J]. Chinese Journal of Food Hygiene, 2019, 31(4): 365. (in Chinese) | |
[2] | 卢庆铮. 不同枇杷花提取液抗氧化能力研究[J]. 石河子科技, 2020(5): 47-48, 46. |
LU Q Z. Study on antioxidant capacity of different loquat flower extracts[J]. Shihezi Science and Technology, 2020(5): 47-48, 46. (in Chinese) | |
[3] | 王翰华, 杨晓春, 陈云. 宁海白枇杷花醇提物不同极性部位的止咳化痰抗炎活性[J]. 中国老年学杂志, 2019, 39(6):1431-1434. |
WANG H H, YANG X C, CHEN Y. Antitussive, expectorant and anti-inflammatory activities of different polar parts of alcohol extract from Ninghai white loquat flower[J]. Chinese Journal of Gerontology, 2019, 39(6):1431-1434. (in Chinese) | |
[4] | 王翰华, 杨晓春, 崔明超, 等. 浙贝母花与宁海白枇杷花配伍的抗炎及抗菌作用[J]. 中成药, 2018, 40(1):46-50. |
WANG H H, YANG X C, CUI M C, et al. Anti-inflammatory and antibacterial effects of combination of Fritillaria thunbergii flowers and Ninghai white Eriobotrya japonica flowers[J]. Chinese Traditional Patent Medicine, 2018, 40(1):46-50. (in Chinese with English abstract) | |
[5] | 傅贤明, 许丽兰, 郑瑶滨. 超声波提取莆田枇杷叶总黄酮及其对酪氨酸酶活性的影响[J]. 九江学院学报(自然科学版), 2020, 35(1):80-85. |
FU X M, XU L L, ZHENG Y B. Ultrasonic extraction of total flavonoids from Putian loquat leaves and its effect on tyrosinase activity[J]. Journal of Jiujiang University(Natural Sciences), 2020, 35(1):80-85. (in Chinese) | |
[6] | YU Z Y, XU K, WANG X, et al. Punicalagin as a novel tyrosinase and melanin inhibitor: inhibitory activity and mechanism[J]. Lebensmittel-Wissenschaft Und-Technologie, 2022, 161(11): 113318. |
[7] | PIRES D A T, GUEDES I A, PEREIRA W L, et al. Isobenzofuran-1(3H)-ones as new tyrosinase inhibitors: biological activity and interaction studies by molecular docking and NMR[J]. Biochimica et Biophysica Acta(BBA) -Proteins and Proteomics, 2021, 1869(2): 140580. |
[8] |
XU H X, LI X F, MO L, et al. Tyrosinase inhibitory mechanism and the anti-browning properties of piceid and its ester[J]. Food Chemistry, 2022, 390: 133207.
DOI URL |
[9] |
JU X Y, CHENG Z, LI H, et al. Tyrosinase inhibitory effects of the peptides from fish scale with the metal copper ions chelating ability[J]. Food Chemistry, 2022, 390: 133146.
DOI URL |
[10] |
BALTACI N, AYDOGDU N, SARIKURKCU C, et al. Onosma gracilis(Trautv.) and O. oreodoxa(Boiss. & Heldr.): Phytochemistry, in silico docking, antioxidant and enzyme inhibitory activities[J]. South African Journal of Botany, 2021, 143: 410-417.
DOI URL |
[11] | 王亚楠. 紫苏叶中黄嘌呤氧化酶抑制物的提取鉴定及生物活性研究[D]. 太原: 中北大学, 2020. |
WANG Y N. Extraction, identification and biological activity of xanthine oxidase inhibitor from perilla leaves[D]. Taiyuan: North University of China, 2020. (in Chinese with English abstract) | |
[12] | 穆燕. 千日红酪氨酸酶抑制剂的分离纯化及其抑制机理研究[D]. 广州: 华南理工大学, 2012. |
MU Y. Isolation, purification and inhibition mechanism of Myrica rubra tyrosinase inhibitor[D]. Guangzhou: South China University of Technology, 2012. (in Chinese with English abstract) | |
[13] |
YU Q, FAN L P, DUAN Z H. Five individual polyphenols as tyrosinase inhibitors: inhibitory activity, synergistic effect, action mechanism, and molecular docking[J]. Food Chemistry, 2019, 297: 124910.
DOI URL |
[14] |
GONG G, GUAN Y Y, ZHANG Z L, et al. Isorhamnetin: a review of pharmacological effects[J]. Biomedicine & Pharmacotherapy, 2020, 128: 110301.
DOI URL |
[15] |
IMEN M B, CHAABANE F, NADIA M, et al. Anti-melanogenesis and antigenotoxic activities of eriodictyol in murine melanoma (B16-F10) and primary human keratinocyte cells[J]. Life Sciences, 2015, 135: 173-178.
DOI URL |
[16] |
ZHANG X X, YU M H, ZHU X L, et al. Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen[J]. Food Chemistry, 2022, 389: 133071.
DOI URL |
[17] |
SHI Y, CHEN Q X, WANG Q, et al. Inhibitory effects of cinnamic acid and its derivatives on the diphenolase activity of mushroom (Agaricus bisporus) tyrosinase[J]. Food Chemistry, 2005, 92(4): 707-712.
DOI URL |
[18] |
VARELA M T, FERRARINI M, MERCALDI V G, et al. Coumaric acid derivatives as tyrosinase inhibitors: efficacy studies through in silico, in vitro and ex vivo approaches[J]. Bioorganic Chemistry, 2020, 103: 104108.
DOI URL |
[19] |
ZHELEVA-DIMITROVA D, ZENGIN G, SINAN K I, et al. Identification of bioactive compounds from Rhaponticoides iconiensis extracts and their bioactivities: an endemic plant to Turkey flora[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113537.
DOI URL |
[20] |
YU Q, FAN L P. Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid as tyrosinase inhibitors[J]. Food Chemistry, 2021, 352: 129369.
DOI URL |
[21] |
MAHDAVI A, MOHAMMADSADEGHI N, MOHAMMADI F, et al. Evaluation of inhibitory effects of some novel phenolic derivatives on the mushroom tyrosinase activity: insights from spectroscopic analyses, molecular docking and in vitro assays[J]. Food Chemistry, 2022, 387: 132938.
DOI URL |
[22] | 谭诗涵, 雷雅婷, 张也, 等. HPD100与D101大孔吸附树脂纯化禾本科芦笋总黄酮与总酚酸研究[J]. 中国药师, 2020, 23(5): 839-844. |
TAN S H, LEI Y T, ZHANG Y, et al. Study on the static and dynamic adsorption properties of total flavonoids and total phenolic acids in Asparagus from Gramineae by HPD100 and D101 macroporous adsorbent resins[J]. Transactions of Nonferrous Metals Society of China, 2020, 23(5): 839-844. (in Chinese) | |
[23] |
WANG X M, CHANG X Y, LUO X M, et al. An integrated approach to characterize intestinal metabolites of four phenylethanoid glycosides and intestinal microbe-mediated antioxidant activity evaluation in vitro using UHPLC-Q-exactive high-resolution mass spectrometry and a 1, 1-diphenyl-2-picrylhydrazyl-based assay[J]. Frontiers in Pharmacology, 2019, 10: 826.
DOI URL |
[24] |
CHEN Y H, ZHANG R P, SONG Y M, et al. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer[J]. The Analyst, 2009, 134(10): 2003-2011.
DOI URL |
[25] | 穆燕, 胡松青. 响应面优化千日红酪氨酸酶抑制活性成分的提取工艺[J]. 现代食品科技, 2018, 34(2): 157-163, 175. |
MU Y, HU S Q. Optimization of the extraction process of tyrosinase inhibitors from Gomphrena globosa by response surface methodology[J]. Modern Food Science and Technology, 2018, 34(2): 157-163, 175. (in Chinese) | |
[26] | 程丽娜, 吴子威, 吴榕珍, 等. 超声辅助提取藜麦黄酮工艺优化及抗氧化性[J]. 食品工业, 2022, 43(5): 128-132. |
CHENG L N, WU Z W, WU R Z, et al. Optimization of ultrasonic-assisted extraction of flavonoids from quinoa and its antioxidant activity[J]. The Food Industry, 2022, 43(5): 128-132. (in Chinese) | |
[27] | HELDT H W, PIECHULLA B. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components[M]//HELDT H W, HELDT F. Plant Biochemistry. 3rd Edition. Academic Press, 2005. |
[28] | 刘意隆. 杨梅黄酮醇鉴定、纯化及其抑制α-葡萄糖苷酶的构效机制研究[D]. 杭州: 浙江大学, 2020. |
LIU Y L. Identification and purification of myricetin alcohol and its structure-activity mechanism of inhibiting α-glucosidase[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[29] | 袁亚光. 超高压提取牡丹花黄酮及其抗氧化性和稳定性的研究[D]. 济南: 齐鲁工业大学, 2015. |
YUAN Y G. Study on extraction of flavonoids from peony flowers by ultra-high pressure and its oxidation resistance and stability[D]. Jinan: Qilu University of Technology, 2015. (in Chinese with English abstract) | |
[30] |
刘刚, 吴燕, 刘育辰, 等. D101大孔树脂纯化黑骨藤总皂苷工艺研究[J]. 亚太传统医药, 2021, 17(9):30-33.
DOI |
LIU G, WU Y, LIU Y C, et al. Study on extraction and purification of total saponins from Periploca forrestii schltr.by D101 macroporous resin[J]. Asia-Pacific Traditional Medicine, 2021, 17(9): 30-33. (in Chinese) | |
[31] |
WU X Y, TANG Y, SUN Y X, et al. Retraction note: extraction of flavonoids and kinetics of purification by macroporous resins from quinoa[J]. Journal of Nanoparticle Research, 2021, 23(8): 175.
DOI |
[32] |
GHALLA H, ISSAOUI N, BARDAK F, et al. Intermolecular interactions and molecular docking investigations on 4-methoxybenzaldehyde[J]. Computational Materials Science, 2018, 149: 291-300.
DOI URL |
[1] | 郑美瑜, 王璐, 刘哲, 张文娟, 高浦, 陆胜民. 桑黄中抑制α-葡萄糖苷酶活性成分提取及其化学成分鉴定[J]. 浙江农业学报, 2022, 34(5): 949-958. |
[2] | 郑园园, 俞浙萍, 张淑文, 李有贵, 孙鹂, 郑锡良, 戚行江. 杨梅枝条醇提物对A375细胞增殖和凋亡的影响及其分子机制[J]. 浙江农业学报, 2022, 34(5): 974-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||