浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2731-2741.DOI: 10.3969/j.issn.1004-1524.20221445

• 生物系统工程 • 上一篇    下一篇

基于改进U-Net网络的苹果叶部病害语义分割方法

王英允1,2,3(), 龙燕1,2,3,*(), 杨智优1,2, 黄铝文2,3,4   

  1. 1.西北农林科技大学 机械与电子工程学院,陕西 杨凌 712100
    2.农业农村部农业物联网重点实验室,陕西 杨凌712100
    3.陕西省农业信息感知与智能服务重点试验室,陕西 杨凌 712100
    4.西北农林科技大学 信息工程学院,陕西 杨凌712100
  • 收稿日期:2022-10-09 出版日期:2023-11-25 发布日期:2023-12-04
  • 作者简介:王英允(1996—),男,陕西西安人,硕士,研究方向为农业电子与自动化技术。E-mail:yingyun@nwafu.edu.cn
  • 通讯作者: * 龙燕,E-mail:longyan@nwsuaf.edu.cn
  • 基金资助:
    陕西省重点研发计划(2020NY-144)

Semantic segmentation method of apple leaf disease based on improved U-Net network

WANG Yingyun1,2,3(), LONG Yan1,2,3,*(), YANG Zhiyou1,2, HUANG Lyuwen2,3,4   

  1. 1. College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
    2. Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    3. Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling 712100, Shaanxi, China
    4. College of Information Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-10-09 Online:2023-11-25 Published:2023-12-04

摘要:

针对自然条件下苹果叶部病斑分割与识别效果欠佳的问题,本文提出一种融合条件随机场和卷积块状注意力模块的苹果叶部病害语义分割模型,实现苹果叶部锈病、褐斑病、灰斑病及斑点落叶病的病斑准确分割和识别。本文在U-Net模型基础上,使用ResNet50为骨干网络防止梯度消失问题,并分别在跳跃连接分支与上采样层加入卷积块状注意力模块,减少训练过程中的分割精度损失,融合Dice Loss和Focal Loss降低损失波动,最后利用条件随机场优化分割结果,获取病斑掩模图像,实现对苹果叶部病害语义分割。本研究在自制苹果叶部病害数据集上进行试验,分析了光照、阴影及水滴等因素对分割结果的影响。试验结果表明:本文构建的语义分割模型相比传统U-Net模型,平均分割精度(mIoU)提升8.24百分点,平均分类精度(mPrecision)提升11百分点,类别平均像素准确率(mPA)提升6.09百分点,受光照不均、雨滴的影响更小,具有更好的鲁棒性和可靠性。

关键词: 病害分割, 注意力机制, 条件随机场, 深度语义分割

Abstract:

Aiming at the problem of poor segmentation and recognition of apple leaf spots under natural conditions, this paper proposed a semantic segmentation model for apple leaf diseases that incorporated conditional random fields and convolutional block attention modules to achieve accurate segmentation and recognition of spots of apple leaf rust, brown spot, gray spot and Alternaria leaf spot disease. In this paper, based on the U-Net model, ResNet50 was used as the backbone network to prevent the gradient vanishing problem, and the convolutional block attention module was added to the jump-connected branch and the up-sampling layer respectively, to reduce the loss of segmentation accuracy during the training process, and the fusion of dice loss and the cross-entropy loss function to reduce the loss fluctuation, and finally, the segmentation results were optimized using the conditional random field to obtain the diseased spot mask image, which was used to realize the accurate segmentation and recognition of apple leaf rust, brown spot, grey spot and Alternaria leaf spot disease so as to realize semantic segmentation of apple leaf diseases. In this study, we conducted experiments on the homemade apple leaf disease dataset, and analyzed the effects of light, shadow and water droplets on the segmentation results. The experimental results showed that the semantic segmentation model constructed in this paper improved the average segmentation accuracy mIoU by 8.24 percentage points, the average classification accuracy mPrecision by 11 percentage points, and the average pixel accuracy of category mPA by 6.09 percentage points compared with the traditional U-Net model, and was less affected by uneven illumination and raindrops, and had better robustness and reliability.

Key words: disease segmentation, attention mechanism, conditional random field, deep semantic segmentation

中图分类号: