浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2128-2136.DOI: 10.3969/j.issn.1004-1524.2021.11.15
杨颖1(), 施迎春1,2, 邢建荣1, 刘哲1, 郑美瑜1, 陆胜民1,*(
)
收稿日期:
2020-09-01
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
陆胜民
作者简介:
*陆胜民,E-mail: lushengmin@hotmail.com基金资助:
YANG Ying1(), SHI Yingchun1,2, XING Jianrong1, LIU Zhe1, ZHENG Meiyu1, LU Shengmin1,*(
)
Received:
2020-09-01
Online:
2021-11-25
Published:
2021-11-26
Contact:
LU Shengmin
摘要:
葡萄柚精油中的主要化学成分柠檬烯易氧化呈异味,是影响货架期和赋香性能的主要原因。为解决这一问题,本文以温度和压力为影响因子,以馏出物中的柠檬烯含量(Y1)、馏余浓缩物中的柠檬烯(Y2)、芳樟醇(Y3)及葵醛含量(Y4)为响应值,采用气相色谱技术检测各组分含量,设计中心组合试验对分子蒸馏工艺进行响应面优化,分离去除原油中的柠檬烯,制备高倍浓缩精油。结果表明:温度和压力对Y2、Y3、Y4均有显著影响,响应面模型的优化温度为44.89 ℃,压力为500 Pa,Y1、Y2、Y3、Y4的预测值分别为94.84%、49.75%、1.63%、2.39%,对应实际值分别为94.89%、49.72%、1.59%、2.34%,与预测值基本吻合,验证了该模型的合理性。浓缩后的精油呈棕褐色,香气更加醇厚、柔润,氧化物含量从3.41%上升到29.31%,实现了8.6倍浓缩。本研究可为其他柑橘类精油的浓缩提供参考。
中图分类号:
杨颖, 施迎春, 邢建荣, 刘哲, 郑美瑜, 陆胜民. 葡萄柚精油“除萜赋香”工艺的优化研究[J]. 浙江农业学报, 2021, 33(11): 2128-2136.
YANG Ying, SHI Yingchun, XING Jianrong, LIU Zhe, ZHENG Meiyu, LU Shengmin. Optimization of “terpenoids removing and aroma enhancing” process for grapefruit essential oil[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2128-2136.
水平 Levels | 因素Factors | |
---|---|---|
温度 θ(X1)/℃ | 压力 Pressure(X2)/Pa | |
-1.414 | 38 | 459 |
-1 | 40 | 500 |
0 | 45 | 600 |
1 | 50 | 700 |
1.414 | 52 | 742 |
表1 中心组合设计的实验因素及水平编码
Table 1 Factors and levels of central composite design experiment
水平 Levels | 因素Factors | |
---|---|---|
温度 θ(X1)/℃ | 压力 Pressure(X2)/Pa | |
-1.414 | 38 | 459 |
-1 | 40 | 500 |
0 | 45 | 600 |
1 | 50 | 700 |
1.414 | 52 | 742 |
序号 No. | 自变量Independent variable | 响应值Response value | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | Y1/% | Y2/% | Y3/% | Y4/% | ||
1 | 0 | 0 | 94.30 | 52.89 | 1.46 | 2.85 | |
2 | 0 | 0 | 94.56 | 53.39 | 1.61 | 2.18 | |
3 | 1 | -1 | 94.85 | 36.40 | 0.84 | 1.89 | |
4 | 1 | 1 | 95.18 | 57.40 | 1.20 | 2.20 | |
5 | 1.414 | 0 | 94.79 | 35.80 | 0.82 | 1.88 | |
6 | -1 | -1 | 95.73 | 55.96 | 1.91 | 2.25 | |
7 | -1 | 1 | 95.20 | 86.96 | 0.67 | 0.94 | |
8 | 0 | 0 | 93.31 | 58.91 | 1.49 | 2.12 | |
9 | 0 | 1.414 | 94.02 | 75.94 | 1.12 | 1.28 | |
10 | 0 | 0 | 95.52 | 65.92 | 1.67 | 2.14 | |
11 | -1.414 | 0 | 94.20 | 87.70 | 0.83 | 0.89 | |
12 | 0 | 0 | 95.92 | 56.32 | 1.54 | 2.15 | |
13 | 0 | -1.414 | 95.35 | 53.76 | 1.46 | 2.27 |
表2 中心组合设计方案与响应值
Table 2 Central composite design and response values
序号 No. | 自变量Independent variable | 响应值Response value | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | Y1/% | Y2/% | Y3/% | Y4/% | ||
1 | 0 | 0 | 94.30 | 52.89 | 1.46 | 2.85 | |
2 | 0 | 0 | 94.56 | 53.39 | 1.61 | 2.18 | |
3 | 1 | -1 | 94.85 | 36.40 | 0.84 | 1.89 | |
4 | 1 | 1 | 95.18 | 57.40 | 1.20 | 2.20 | |
5 | 1.414 | 0 | 94.79 | 35.80 | 0.82 | 1.88 | |
6 | -1 | -1 | 95.73 | 55.96 | 1.91 | 2.25 | |
7 | -1 | 1 | 95.20 | 86.96 | 0.67 | 0.94 | |
8 | 0 | 0 | 93.31 | 58.91 | 1.49 | 2.12 | |
9 | 0 | 1.414 | 94.02 | 75.94 | 1.12 | 1.28 | |
10 | 0 | 0 | 95.52 | 65.92 | 1.67 | 2.14 | |
11 | -1.414 | 0 | 94.20 | 87.70 | 0.83 | 0.89 | |
12 | 0 | 0 | 95.92 | 56.32 | 1.54 | 2.15 | |
13 | 0 | -1.414 | 95.35 | 53.76 | 1.46 | 2.27 |
模型 Model | 来源 Origin | 平方和 SS | 自由度 df | 均方 MS | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|---|
模型 Model | 2 745.73 | 2 | 1 372.86 | 39.06 | <0.000 1 | ** | |
Y2 | 失拟 Misconduct | 239.00 | 6 | 39.83 | 1.42 | 0.383 7 | NS |
纯误差 Pure error | 112.47 | 4 | 28.12 | ||||
合计 Sum | 3 097.20 | 12 | |||||
模型 Model | 1.67 | 4 | 0.42 | 18.18 | 0.000 4 | ** | |
Y3 | 失拟 Misconduct | 0.15 | 4 | 0.038 | 4.87 | 0.077 1 | NS |
纯误差 Pure error | 0.031 | 4 | 0.007 8 | ||||
合计 Sum | 1.85 | 12 | |||||
模型 Model | 2.99 | 4 | 0.75 | 7.33 | 0.008 7 | ** | |
Y4 | 失拟 Misconduct | 0.43 | 4 | 0.11 | 1.11 | 0.461 2 | NS |
纯误差 Pure error | 0.39 | 4 | 0.097 | ||||
合计 Sum | 3.8 | 12 |
表3 Y2、Y3、Y4响应模型的方差分析
Table 3 Variance analysis of response models for Y2, Y3 and Y4
模型 Model | 来源 Origin | 平方和 SS | 自由度 df | 均方 MS | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|---|
模型 Model | 2 745.73 | 2 | 1 372.86 | 39.06 | <0.000 1 | ** | |
Y2 | 失拟 Misconduct | 239.00 | 6 | 39.83 | 1.42 | 0.383 7 | NS |
纯误差 Pure error | 112.47 | 4 | 28.12 | ||||
合计 Sum | 3 097.20 | 12 | |||||
模型 Model | 1.67 | 4 | 0.42 | 18.18 | 0.000 4 | ** | |
Y3 | 失拟 Misconduct | 0.15 | 4 | 0.038 | 4.87 | 0.077 1 | NS |
纯误差 Pure error | 0.031 | 4 | 0.007 8 | ||||
合计 Sum | 1.85 | 12 | |||||
模型 Model | 2.99 | 4 | 0.75 | 7.33 | 0.008 7 | ** | |
Y4 | 失拟 Misconduct | 0.43 | 4 | 0.11 | 1.11 | 0.461 2 | NS |
纯误差 Pure error | 0.39 | 4 | 0.097 | ||||
合计 Sum | 3.8 | 12 |
模型 Model | 来源 Origin | 平方和 SS | 自由度 df | 均方 MS | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|---|
Y2 | X1 | 1 876.91 | 1 | 1 876.91 | 53.40 | <0.000 1 | ** |
X2 | 868.82 | 1 | 868.82 | 24.72 | 0.000 6 | ** | |
X1 | 40 | 1 | 0.040 | 1.73 | 0.225 3 | NS | |
Y3 | X2 | 0.23 | 1 | 0.23 | 10.05 | 0.013 2 | * |
X1 X2 | 0.64 | 1 | 0.64 | 27.89 | 0.000 7 | ** | |
| 0.76 | 1 | 0.76 | 33.06 | 0.000 4 | ** | |
X1 | 0.66 | 1 | 0.66 | 6.51 | 0.034 1 | NS | |
Y4 | X2 | 0.72 | 1 | 0.72 | 7.07 | 0.028 9 | * |
X1 X2 | 0.65 | 1 | 0.65 | 6.41 | 0.035 1 | * | |
| 0.95 | 1 | 0.95 | 9.32 | 0.015 7 | * |
表4 Y2、Y3、Y4模型的回归方程系数的方差分析
Table 4 Variance analysis for regression coefficients of Y2, Y3, Y4 models equations
模型 Model | 来源 Origin | 平方和 SS | 自由度 df | 均方 MS | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|---|
Y2 | X1 | 1 876.91 | 1 | 1 876.91 | 53.40 | <0.000 1 | ** |
X2 | 868.82 | 1 | 868.82 | 24.72 | 0.000 6 | ** | |
X1 | 40 | 1 | 0.040 | 1.73 | 0.225 3 | NS | |
Y3 | X2 | 0.23 | 1 | 0.23 | 10.05 | 0.013 2 | * |
X1 X2 | 0.64 | 1 | 0.64 | 27.89 | 0.000 7 | ** | |
| 0.76 | 1 | 0.76 | 33.06 | 0.000 4 | ** | |
X1 | 0.66 | 1 | 0.66 | 6.51 | 0.034 1 | NS | |
Y4 | X2 | 0.72 | 1 | 0.72 | 7.07 | 0.028 9 | * |
X1 X2 | 0.65 | 1 | 0.65 | 6.41 | 0.035 1 | * | |
| 0.95 | 1 | 0.95 | 9.32 | 0.015 7 | * |
参数 Parameters | 最小值 Minimum value | 最大值 Maximum value | 重要性 Importance |
---|---|---|---|
温度θ/℃ | 40 | 50 | 5 |
压力Pressure/Pa | 500 | 700 | 5 |
Y1/% | 94 | 97 | 2 |
Y2/% | 30 | 60 | 5 |
Y3/% | 1.3 | 2.5 | 4 |
Y4/% | 1.5 | 2.8 | 4 |
表5 响应面模型的优化参数设置
Table 5 Parameters setting for the optimization of response surface models
参数 Parameters | 最小值 Minimum value | 最大值 Maximum value | 重要性 Importance |
---|---|---|---|
温度θ/℃ | 40 | 50 | 5 |
压力Pressure/Pa | 500 | 700 | 5 |
Y1/% | 94 | 97 | 2 |
Y2/% | 30 | 60 | 5 |
Y3/% | 1.3 | 2.5 | 4 |
Y4/% | 1.5 | 2.8 | 4 |
[1] |
MURUNGA A N, MIRUKA D O, DRIVER C, et al. Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model[J]. PLoS One, 2016, 11(4):e0153241.
DOI URL |
[2] | 陈红丽, 刘可, 杨小爱, 等. 葡萄柚精油及其分子蒸馏组分的抗菌活性研究[J]. 赣南师范大学学报, 2017, 38(3):81-84. |
CHEN H L, LIU K, YANG X A, et al. Antibacterial activities of grapefruit oil and its molecular distillation fraction[J]. Journal of Gannan Normal University, 2017, 38(3):81-84.(in Chinese with English abstract) | |
[3] |
TEPE B, DAFERERA D, SOKMEN A, et al. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae)[J]. Food Chemistry, 2005, 90(3):333-340.
DOI URL |
[4] |
WOO C G, KIM H J, KIM Y J, et al. Enhanced antimicrobial activity on non-conducting and conducting air filters by using air ions and grapefruit seed extract[J]. Aerosol and Air Quality Research, 2017, 17(7):1917-1924.
DOI URL |
[5] | 朱春华, 周先艳, 李进学, 等. 葡萄柚果实营养及健康功效研究进展[J]. 中国医药导报, 2019, 16(15):29-32. |
ZHU C H, ZHOU X Y, LI J X, et al. Research progress of nutrient components and health benefits of grapefruit[J]. China Medical Herald, 2019, 16(15):29-32.(in Chinese with English abstract) | |
[6] | 陈丽艳, 王昶. 葡萄柚精油的化学成分分析[J]. 黑龙江医药, 2010, 23(1):36-37. |
CHEN L Y, WANG C. Analysis of the chemical components of grapefruit essential oil[J]. Heilongjiang Medicine Journal, 2010, 23(1):36-37.(in Chinese with English abstract) | |
[7] | 黄善松, 刘鸿, 李志华, 等. 葡萄柚精油化学成分及应用研究进展[J]. 湖北农业科学, 2018, 57(S2):8-10. |
HUANG S S, LIU H, LI Z H, et al. Research progress on chemical constituents and application of grapefruit essential oil[J]. Hubei Agricultural Sciences, 2018, 57(S2):8-10.(in Chinese with English abstract) | |
[8] | 孙凌峰, 刘秀娟, 叶文峰, 等. 柑橘油和苧烯的性质及制取方法[J]. 林产化工通讯, 2000, 34(6):19-23. |
SUN L F, LIU X J, YE W F, et al. Property of citrus peel oil and limonene and methods of their preparation[J]. Forest and Chemical Industry Communication, 2000, 34(6):19-23. (in Chinese) | |
[9] |
FLAMINI G, CIONI P L. Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.)[J]. Food Chemistry, 2010, 120(4):984-992.
DOI URL |
[10] | 陈静静, 孙志高. 苧烯的研究进展[J]. 湖南农业大学学报(自然科学版), 2007, 12(33):114-117. |
CHEN J J, SUN Z G. Research advances on limonene[J]. Journal of Hunan Agricultural University(Natural Sciences), 2007, 12(33):114-117. (in Chinese with English abstract) | |
[11] |
PAOLI M, DE ROCCA SERRA D, TOMI F, et al. Chemical composition of the leaf essential oil of grapefruits (Citrus paradisi Macf.) in relation with the genetic origin[J]. Journal of Essential Oil Research, 2016, 28(4):265-271.
DOI URL |
[12] |
ESMAEILI A, ABEDNAZARI S, ABDOLLAHZADE Y M, et al. Peel volatile compounds of apple (Malus domestica) and grapefruit (Citrus paradisi)[J]. Journal of Essential Oil Bearing Plants, 2012, 15(5):794-799.
DOI URL |
[13] |
VIUDA-MARTOS M, RUIZ-NAVAJAS Y, FERNÁNDEZ-LÓPEZ J, et al. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils[J]. Food Control, 2008, 19(12):1130-1138.
DOI URL |
[14] | 陈君石, 闻芝梅. 功能性食品的科学[M]. 北京: 人民卫生出版社, 2002. |
[15] | 陈静静. 高纯度柑桔d-苧烯的提取与纯化技术研究[D]. 重庆: 西南大学, 2009. |
CHEN J J. Study on the extraction and purification technology of high-purity d-limonene from Citrus[D]. Chongqing: Southwest University, 2009. (in Chinese with English abstract) | |
[16] | 王伟江. 天然活性单萜: 柠檬烯的研究进展[J]. 中国食品添加剂, 2005(1):33-37. |
WANG W J. Recent advances on limonene, a natural and active monoterpene[J]. China Food Additives, 2005(1):33-37.(in Chinese with English abstract) | |
[17] | 连锦花, 孙果宋, 雷福厚. 分子蒸馏技术及其应用[J]. 化工技术与开发, 2010, 39(7):32-38. |
LIAN J H, SUN G S, LEI F H. Development of molecular distillation technique[J]. Technology & Development of Chemical Industry, 2010, 39(7):32-38.(in Chinese with English abstract) | |
[18] | 贺红宇, 朱永清, 李敏, 等. 分子蒸馏技术纯化柠檬精油工艺研究[J]. 保鲜与加工, 2019, 19(6):186-190. |
HE H Y, ZHU Y Q, LI M, et al. Study on purification of lemon essential oil by molecular distillation[J]. Storage and Process, 2019, 19(6):186-190.(in Chinese with English abstract) | |
[19] |
BÜSING A, DROTLEFF A M, TERNES W. Identification of α-tocotrienolquinone epoxides and development of an efficient molecular distillation procedure for quantitation of α-tocotrienol oxidation products in food matrices by high-performance liquid chromatography with diode array and fluorescence detection[J]. Journal of Agricultural and Food Chemistry, 2012, 60(34):8302-8313.
DOI URL |
[20] | 缪智诚, 王雅寓, 徐文迪, 等. 分子蒸馏纯化富含中长碳链甘油三酯的人乳替代脂[J]. 中国油脂, 2020, 45(2):32-38. |
MIAO Z C, WANG Y Y, XU W D, et al. Molecular distillation purification of human milk fat substitutes rich in medium and long chain triacylglycerols[J]. China Oils and Fats, 2020, 45(2):32-38.(in Chinese with English abstract) | |
[21] | 杨晓伟, 杨朝辉, 庞鹏, 等. 分子蒸馏技术在食品工业中的应用[J]. 食品工程, 2007(3):23-25. |
YANG X W, YANG Z H, PANG P, et al. Application of molecular distillation technology in the food industry[J]. Food Engineering, 2007(3):23-25.(in Chinese with English abstract) | |
[22] |
GUO Z G, WANG S R, GU Y L, et al. Separation characteristics of biomass pyrolysis oil in molecular distillation[J]. Separation and Purification Technology, 2010, 76(1):52-57.
DOI URL |
[23] | 刘玉兰, 陈莉, 张小龙, 等. 分子蒸馏对沙棘果油中8种塑化剂组分脱除及综合品质的影响[J]. 食品科学, 2019, 40(13):87-93. |
LIU Y L, CHEN L, ZHANG X L, et al. Effect of molecular distillation on the removal of 8 phthalic acid esters and the quality of sea buckthorn(Hippophae rhamnoides L.) pulp oil[J]. Food Science, 2019, 40(13):87-93.(in Chinese with English abstract) | |
[24] | 陆胜民, 施迎春, 杨颖. 柑橘类精油的粗提及浓缩精制研究进展[J]. 食品与发酵科技, 2012, 48(1):1-6. |
LU S M, SHI Y C, YANG Y. Research progress on extraction and refining of Citrus essential oil[J]. Food and Fermentation Technology, 2012, 48(1):1-6.(in Chinese with English abstract) | |
[25] | 李悦, 侯滨滨, 静宝元. 葡萄柚精油的气相色谱-质谱分析[J]. 食品研究与开发, 2009, 30(12):128-131. |
LI Y, HOU B B, JING B Y. The analysis of grapefruit essential oil by gas chromatography/mass spectrometry[J]. Food Research and Development, 2009, 30(12):128-131.(in Chinese with English abstract) | |
[26] | 杨颖, 施迎春, 陈剑兵, 等. 分子蒸馏精制对葡萄柚精油理化性质及赋香性能的影响[J]. 中国食品学报, 2013, 13(3):208-213. |
YANG Y, SHI Y C, CHEN J B, et al. Effects of molecular distillation refining on physical and chemical characteristics and aromagiving capability of grapefruit essential oil[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(3):208-213.(in Chinese with English abstract) |
[1] | 贾洋洋, 聂枞宁, 罗兴禹, 杨凯辉, 何春雷. 外源酶辅助发酵加工藏茶的工艺研究[J]. 浙江农业学报, 2021, 33(9): 1720-1729. |
[2] | 陈新峰1,2,张治国2,王君虹2,周利亘2,*. 响应面法优化微波固相合成毛虾肽螯合钙工艺[J]. 浙江农业学报, 2015, 27(8): 1473-. |
[3] | 应晨,阮川芬,汤逸飞,章华伟*. 内生产酶溶杆菌R\|2\|1发酵工艺优化[J]. 浙江农业学报, 2015, 27(2): 220-. |
[4] | 王玲丽,滕红梅*,弓苗苗. 响应面分析法优化超声提取连翘花黄色素工艺研究[J]. 浙江农业学报, 2014, 26(4): 961-. |
[5] | 王楠;*;王伟;周虹;唐昌权. 甲鱼蛋白抗氧化肽的中性蛋白酶酶解条件优化[J]. , 2014, 26(2): 0-303308. |
[6] | 孙 宏;汤江武;葛向阳;*;. 响应面法优化菜粕固态发酵工艺的研究[J]. , 2009, 21(3): 0-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||