浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1297-1305.DOI: 10.3969/j.issn.1004-1524.2022.06.20
王钧1,2(), 陆洲2, 罗明2, 徐飞飞2, 张序1,*(
)
收稿日期:
2021-07-15
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
张序
作者简介:
*张序,E-mail: xu1960zhang@sina.com基金资助:
WANG Jun1,2(), LU Zhou2, LUO Ming2, XU Feifei2, ZHANG Xu1,*(
)
Received:
2021-07-15
Online:
2022-06-25
Published:
2022-06-30
Contact:
ZHANG Xu
摘要:
准确快速得获取冬小麦地块的土壤墒情,可为高效利用水资源、实现精准灌溉提供参考。为此,特在江苏省张家港市获取返青期冬小麦种植区的无人机多光谱遥感数据,并同步测定2个深度(10 cm和20 cm)的土壤墒情,通过遥感图像提取光谱反射率,计算归一化植被指数(NDVI)、增强型植被指数(EVI)和垂直干旱指数(PDI),进行共线性分析后,分别运用逐步回归法、岭回归法和偏最小二乘法,构建针对不同深度土壤墒情的反演模型,并基于最佳反演模型绘制试验区不同深度土壤的墒情反演图。结果表明,用逐步回归法构建的模型在10、20 cm深度土壤墒情反演中的决定系数分别达到了0.885、0.782,建模精度最优,且针对10 cm深度土壤墒情的反演效果优于20 cm。研究结果可为冬小麦返青期土壤墒情监测方法的选择提供参考。
中图分类号:
王钧, 陆洲, 罗明, 徐飞飞, 张序. 基于机载多光谱的冬小麦返青期土壤墒情反演[J]. 浙江农业学报, 2022, 34(6): 1297-1305.
WANG Jun, LU Zhou, LUO Ming, XU Feifei, ZHANG Xu. Inversion of soil moisture content of winter wheat at turning green period based on multispectral remote sensing by unmanned aerial vehicle[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1297-1305.
深度 Depth/cm | 样本集 Dataset | 样本数量 Sample size | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|---|
10 | 总集Whole set | 39 | 0.347 | 0.456 | 0.393 | 0.024 | 0.060 |
建模集Modeling set | 30 | 0.347 | 0.456 | 0.394 | 0.026 | 0.065 | |
检验集Verification set | 9 | 0.363 | 0.412 | 0.392 | 0.016 | 0.041 | |
20 | 总集Whole set | 39 | 0.368 | 0.507 | 0.476 | 0.048 | 0.101 |
建模集Modeling set | 30 | 0.403 | 0.507 | 0.489 | 0.044 | 0.091 | |
检验集Verification set | 9 | 0.368 | 0.504 | 0.440 | 0.038 | 0.087 |
表1 研究区采样点土壤墒情特征统计
Table 1 Statistics of soil moisture characteristics of sampling points in study area
深度 Depth/cm | 样本集 Dataset | 样本数量 Sample size | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Standard deviation | 变异系数 Coefficient of variation |
---|---|---|---|---|---|---|---|
10 | 总集Whole set | 39 | 0.347 | 0.456 | 0.393 | 0.024 | 0.060 |
建模集Modeling set | 30 | 0.347 | 0.456 | 0.394 | 0.026 | 0.065 | |
检验集Verification set | 9 | 0.363 | 0.412 | 0.392 | 0.016 | 0.041 | |
20 | 总集Whole set | 39 | 0.368 | 0.507 | 0.476 | 0.048 | 0.101 |
建模集Modeling set | 30 | 0.403 | 0.507 | 0.489 | 0.044 | 0.091 | |
检验集Verification set | 9 | 0.368 | 0.504 | 0.440 | 0.038 | 0.087 |
图2 基于机载多光谱监测土壤墒情的方法
Fig. 2 Method of soil moisture monitoring by multi spectral remote sensing with unmanned aerial vehicle UAV, Unmanned aerial vehicle; PLSR, Partial least squares regression. The same as below.
指标Index | VIF | 指标Index | VIF |
---|---|---|---|
蓝Blue | 35.935 | 近红外Near-infrared | 46.548 |
绿Green | 27.135 | NDVI | 101.345 |
红Red | 24.573 | EVI | 99.657 |
红边Red edge | 48.147 | PDI | 34.640 |
表2 方差膨胀因子(VIF)统计
Table 2 Statistical analysis of variance inflation factor (VIF)
指标Index | VIF | 指标Index | VIF |
---|---|---|---|
蓝Blue | 35.935 | 近红外Near-infrared | 46.548 |
绿Green | 27.135 | NDVI | 101.345 |
红Red | 24.573 | EVI | 99.657 |
红边Red edge | 48.147 | PDI | 34.640 |
建模方法 Modeling method | 深度 Depth/cm | 建模结果 Modeling result | R2 | RMSE |
---|---|---|---|---|
逐步回归法 Stepwise regression | 10 | Y=-0.396B1-0.232B2-0.068N+0.508 | 0.885 | 0.009 |
20 | Y=-2.695B2+0.960B5+1.019E-1.072P+1.298 | 0.782 | 0.016 | |
岭回归法 Ridge regression | 10 | Y=0.021B1-0.084B2-0.301B3-0.252B4-0.086B5-0.063N+0.064E-0.255P+0.428 | 0.762 | 0.013 |
20 | Y=-0.125B1-0.244B2+0.068B3-0.330B4-0.009B5+0.075N-0.101E-0.304P +0.871 | 0.668 | 0.023 | |
偏最小二乘法 Partial least squares regression | 10 | Y=0.076B1-0.293B2-0.255B3-0.179B4+0.204B5-0.755N+0.983E-0.151P +0.643 | 0.838 | 0.009 |
20 | Y=-1.085B1-0.101B2-0.400B3-0.514B4+0.803B5-0.557N-0.034E-0.339P +0.938 | 0.737 | 0.020 |
表3 基于不同波段反射率的土壤墒情多元回归模型
Table 3 Multiple regression models of soil moisture based on reflectance of different bands
建模方法 Modeling method | 深度 Depth/cm | 建模结果 Modeling result | R2 | RMSE |
---|---|---|---|---|
逐步回归法 Stepwise regression | 10 | Y=-0.396B1-0.232B2-0.068N+0.508 | 0.885 | 0.009 |
20 | Y=-2.695B2+0.960B5+1.019E-1.072P+1.298 | 0.782 | 0.016 | |
岭回归法 Ridge regression | 10 | Y=0.021B1-0.084B2-0.301B3-0.252B4-0.086B5-0.063N+0.064E-0.255P+0.428 | 0.762 | 0.013 |
20 | Y=-0.125B1-0.244B2+0.068B3-0.330B4-0.009B5+0.075N-0.101E-0.304P +0.871 | 0.668 | 0.023 | |
偏最小二乘法 Partial least squares regression | 10 | Y=0.076B1-0.293B2-0.255B3-0.179B4+0.204B5-0.755N+0.983E-0.151P +0.643 | 0.838 | 0.009 |
20 | Y=-1.085B1-0.101B2-0.400B3-0.514B4+0.803B5-0.557N-0.034E-0.339P +0.938 | 0.737 | 0.020 |
建模方法 Modeling method | 深度 Depth/cm | R2 | RMSE | RPD |
---|---|---|---|---|
逐步回归法 Stepwise regression | 10 | 0.899 | 0.005 | 3.091 |
20 | 0.865 | 0.016 | 2.220 | |
岭回归法 Ridge regression | 10 | 0.843 | 0.008 | 2.020 |
20 | 0.814 | 0.020 | 1.095 | |
偏最小二乘法 Partial least squares regression | 10 | 0.856 | 0.008 | 2.142 |
20 | 0.831 | 0.017 | 2.136 |
表4 土壤墒情反演结果的精度
Table 4 Accuracy of soil moisture content inversion
建模方法 Modeling method | 深度 Depth/cm | R2 | RMSE | RPD |
---|---|---|---|---|
逐步回归法 Stepwise regression | 10 | 0.899 | 0.005 | 3.091 |
20 | 0.865 | 0.016 | 2.220 | |
岭回归法 Ridge regression | 10 | 0.843 | 0.008 | 2.020 |
20 | 0.814 | 0.020 | 1.095 | |
偏最小二乘法 Partial least squares regression | 10 | 0.856 | 0.008 | 2.142 |
20 | 0.831 | 0.017 | 2.136 |
[1] | 潘宁, 王帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13): 4615-4626. |
PAN N, WANG S, LIU Y X, et al. Advances in soil moisture retrieval from remote sensing[J]. Acta Ecologica Sinica, 2019, 39(13): 4615-4626. (in Chinese with English abstract) | |
[2] |
KUMAR S V, DIRMEYER P A, PETERS-LIDARD C D, et al. Information theoretic evaluation of satellite soil moisture retrievals[J]. Remote Sensing of Environment, 2018, 204: 392-400.
DOI URL |
[3] | 吴巍, 王高旭, 吴永祥, 等. 农田灌溉用水量客观测算模型数据库研究[J]. 水利信息化, 2021(2): 24-28. |
WU W, WANG G X, WU Y X, et al. Research on objective calculating model database of farmland irrigation water consumption[J]. Water Resources Informatization, 2021(2): 24-28. (in Chinese with English abstract) | |
[4] | 杨珺博, 王斌, 黄嘉亮, 等. 无人机多光谱遥感监测冬小麦拔节期根域土壤含水率[J]. 节水灌溉, 2019(10): 6-10. |
YANG J B, WANG B, HUANG J L, et al. Monitoring soil moisture content in root zone of winter wheat at jointing stage by multispectral remote sensing of UAV[J]. Water Saving Irrigation, 2019(10): 6-10. (in Chinese with English abstract) | |
[5] | 孙越君, 郑小坡, 秦其明, 等. 不同质量含水量的土壤反射率光谱模拟模型[J]. 光谱学与光谱分析, 2015, 35(8): 2236-2240. |
SUN Y J, ZHENG X P, QIN Q M, et al. Modeling soil spectral reflectance with different mass moisture content[J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2236-2240. (in Chinese with English abstract) | |
[6] | 吕友, 陈能成, 陈泽强. GF-1垂直干旱指数的土壤湿度空间格局分析: 以秭归县为例[J]. 测绘科学, 2018, 43(4): 94-99. |
LÜ Y, CHEN N C, CHEN Z Q. Spatial pattern analysis of soil moisture based on PDI of GF-1: taking Zigui County as an example[J]. Science of Surveying and Mapping, 2018, 43(4): 94-99. (in Chinese with English abstract) | |
[7] |
DONG J Z, STEELE-DUNNE S C, OCHSNER T E, et al. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother[J]. Advances in Water Resources, 2016, 91: 104-116.
DOI URL |
[8] |
LIU C Z, SHI J C. Estimation of vegetation parameters of water cloud model for global soil moisture retrieval using time-series L-band aquarius observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5621-5633.
DOI URL |
[9] | 张智韬, 王海峰, 韩文霆, 等. 基于无人机多光谱遥感的土壤含水率反演研究[J]. 农业机械学报, 2018, 49(2): 173-181. |
ZHANG Z T, WANG H F, HAN W T, et al. Inversion of soil moisture content based on multispectral remote sensing of UAVs[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 173-181. (in Chinese with English abstract) | |
[10] | 李鑫星, 朱晨光, 傅泽田, 等. 基于无人机多光谱图像的土壤水分检测方法研究[J]. 光谱学与光谱分析, 2020, 40(4): 1238-1242. |
LI X X, ZHU C G, FU Z T, et al. Rapid detection of soil moisture content based on UAV multispectral image[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1238-1242. (in Chinese with English abstract) | |
[11] | 冯珊珊, 梁雪映, 樊风雷, 等. 基于无人机多光谱数据的农田土壤水分遥感监测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 74-81. |
FENG S S, LIANG X Y, FAN F L, et al. Monitoring of farmland soil moisture based on unmanned aerial vehicle multispectral data[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 74-81. (in Chinese with English abstract) | |
[12] |
ROMERO M, LUO Y C, SU B F, et al. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management[J]. Computers and Electronics in Agriculture, 2018, 147: 109-117.
DOI URL |
[13] |
VERRELST J, SCHAEPMAN M E, KOETZ B, et al. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data[J]. Remote Sensing of Environment, 2008, 112(5): 2341-2353.
DOI URL |
[14] | 周晓红, 张飞, 张海威, 等. 艾比湖湿地自然保护区土壤盐分多光谱遥感反演模型[J]. 光谱学与光谱分析, 2019, 39(4): 1229-1235. |
ZHOU X H, ZHANG F, ZHANG H W, et al. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur Lake wetland nature reserve[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1229-1235. (in Chinese with English abstract) | |
[15] | 王海峰, 张智韬, 付秋萍, 等. 低空无人机多光谱遥感数据的土壤含水率反演[J]. 节水灌溉, 2018(1): 90-94. |
WANG H F, ZHANG Z T, FU Q P, et al. Inversion of soil moisture content based on multispectral remote sensing data of low altitude UAV[J]. Water Saving Irrigation, 2018(1): 90-94. (in Chinese with English abstract) | |
[16] | 刘国旗. 多重共线性的产生原因及其诊断处理[J]. 合肥工业大学学报(自然科学版), 2001, 24(4): 607-610. |
LIU G Q. Cause of multi-collinearity and its diagnosis and treatment[J]. Journal of Hefei University of Technology (Natural Science), 2001, 24(4): 607-610. (in Chinese with English abstract) | |
[17] | 钱家炜, 刘晓青, 张静静, 等. 张家港市农田土壤重金属含量高光谱遥感监测模型构建[J]. 浙江农业学报, 2020, 32(8): 1437-1445. |
QIAN J W, LIU X Q, ZHANG J J, et al. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City[J]. Acta Agriculturae Zhejiangensis, 2020, 32(8): 1437-1445. (in Chinese with English abstract) | |
[18] |
IMANI M, GHASSEMIAN H. Ridge regression-based feature extraction for hyperspectral data[J]. International Journal of Remote Sensing, 2015, 36(6): 1728-1742.
DOI URL |
[19] |
NANNI M R, CEZAR E, DA SILVA JUNIOR C A, et al. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies[J]. Archives of Agronomy and Soil Science, 2018, 64(5): 682-695.
DOI URL |
[20] | 王国华, 张虎, 魏岳嵩. 偏最小二乘回归在SPSS软件中的实现[J]. 统计与决策, 2017(7): 67-71. |
WANG G H, ZHANG H, WEI Y S. Implementation of partial least squares regression in SPSS software[J]. Statistics & Decision, 2017(7): 67-71. (in Chinese with English abstract) | |
[21] | 谭丞轩, 张智韬, 许崇豪, 等. 无人机多光谱遥感反演各生育期玉米根域土壤含水率[J]. 农业工程学报, 2020, 36(10): 63-74. |
TAN C X, ZHANG Z T, XU C H, et al. Soil water content inversion model in field maize root zone based on UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 63-74. (in Chinese with English abstract) | |
[22] | 缪闯和, 吕贻忠. 黑土、 潮土和红壤可溶性有机质的光谱特征及结构差异[J]. 土壤, 2021, 53(1): 168-172. |
MIAO C H, LÜ Y Z. Spectral characteristics and structural differences of DOM in black soil, fluvo-aquic soil and red soil[J]. Soils, 2021, 53(1): 168-172. (in Chinese with English abstract) | |
[23] | 郭晗, 张序, 陆洲, 等. 基于机载高光谱影像的南方水稻土有机质含量估算[J]. 中国农业科技导报, 2020, 22(6): 60-71. |
GUO H, ZHANG X, LU Z, et al. Estimation of organic matter content in southern paddy soil based on airborne hyperspectral images[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 60-71. (in Chinese with English abstract) | |
[24] |
MUSTAFA A, XU M G, ALI SHAH S A, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of Southern China[J]. Journal of Environmental Management, 2020, 270: 110894.
DOI URL |
[25] | 韩晓增, 邹文秀. 东北黑土地保护利用研究足迹与科技研发展望[J]. 土壤学报, 2021, 58(6): 1341-1358. |
HAN X Z, ZOU W X. Research perspectives and footprint of utilization and protection of black soil in northeast China[J]. Acta Pedologica Sinica, 2021, 58(6): 1341-1358. (in Chinese with English abstract) |
[1] | 邬宁珊, 王佳希, 张岩, 元慕田, 张琪, 高驰宇. 基于无人机可见光影像的树种和树冠信息提取——以晋西黄土区蔡家川流域为例[J]. 浙江农业学报, 2021, 33(8): 1505-1518. |
[2] | 尹林江, 周忠发, 黄登红, 尚梦佳. 基于无人机影像匹配点云数据的喀斯特峡谷区火龙果单株提取研究[J]. 浙江农业学报, 2020, 32(6): 1092-1102. |
[3] | 王念一, 于丰华, 许童羽, 杜文, 郭忠辉, 张国圣. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2): 359-366. |
[4] | 刘志, 贺正, 苗芳芳, 贾彪. 基于无人机的水肥一体化玉米出苗率估算方法与试验[J]. 浙江农业学报, 2019, 31(6): 977-985. |
[5] | 梁长江, 吴雪梅, 王芳, 宋朱军, 张富贵. 基于无人机的田间地膜识别算法研究[J]. 浙江农业学报, 2019, 31(6): 1005-1011. |
[6] | 俞明涛, 张科锋. 基于HYDRUS-2D软件的土壤水力特征参数反演及间接地下滴灌的土壤水分运动模拟[J]. 浙江农业学报, 2019, 31(3): 458-468. |
[7] | 马驰. 基于GF-1与Landsat 8遥感数据的耕地表层土壤有机质含量反演精度对比研究[J]. 浙江农业学报, 2017, 29(1): 137-143. |
[8] | 饶元, 许文俊, 江朝晖, Naftali Lazarovitch, 李绍稳. 非饱和土壤水运动模型参数优选方法研究[J]. 浙江农业学报, 2016, 28(12): 2082-2089. |
[9] | 徐 豪;丁晓东;韩 凝;邓劲松;王 珂. 旋翼无人机遥感图像几何纠正的初步研究[J]. , 2009, 21(1): 0-65. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 672
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 378
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||