浙江农业学报 ›› 2022, Vol. 34 ›› Issue (7): 1386-1395.DOI: 10.3969/j.issn.1004-1524.2022.07.05
陈诗雨1,2(), 徐美余1,2, 邓征宇1,2, 王峰1,2, 张麒麟1,2, 邓先余1,2, 林连兵1,2,*(
)
收稿日期:
2021-04-22
出版日期:
2022-07-25
发布日期:
2022-07-26
通讯作者:
林连兵
作者简介:
* 林连兵,E-mail: linlb@kmust.edu.cn基金资助:
CHEN Shiyu1,2(), XU Meiyu1,2, DENG Zhengyu1,2, WANG Feng1,2, ZHANG Qilin1,2, DENG Xianyu1,2, LIN Lianbing1,2,*(
)
Received:
2021-04-22
Online:
2022-07-25
Published:
2022-07-26
Contact:
LIN Lianbing
摘要:
志贺氏菌是一种常见的肠道致病菌,其引起的细菌病是危害公共卫生的人畜共患病之一。随着抗生素的滥用,志贺氏菌耐药性的问题难以控制,急需新的方法来解决,采用噬菌体杀灭耐药性细菌已日益受到重视。本研究建立肉鸡感染志贺氏菌模型,分别采用感染前2 h灌喂噬菌体液预防和感染2 h后灌喂噬菌体液两种方法对肉鸡进行治疗。灌喂志贺氏菌2 h后的肉鸡均出现腹泻状况,粪便中志贺氏菌含量最高达到1×107 CFU·g-1,优势菌群含量大幅下降,有害菌群占比上升。噬菌体治疗后,肉鸡粪便中噬菌体含量上升,志贺氏菌含量下降,粪便性状及肠道菌群恢复正常,且肉鸡存活率100%。没有噬菌体治疗的肉鸡存活率60%,解剖观察发现器官病变明显。噬菌体ΦDS8在治疗志贺氏菌株感染方面有良好的效果,其作为抗生素替代产品有较好的应用价值和前景。
中图分类号:
陈诗雨, 徐美余, 邓征宇, 王峰, 张麒麟, 邓先余, 林连兵. 志贺氏菌噬菌体ΦDS8对患病肉鸡的治疗及其肠道菌群的影响[J]. 浙江农业学报, 2022, 34(7): 1386-1395.
CHEN Shiyu, XU Meiyu, DENG Zhengyu, WANG Feng, ZHANG Qilin, DENG Xianyu, LIN Lianbing. Treatment of diseased broilers with Shigella bacteriophage ΦDS8 and the effect on their intestinal flora[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1386-1395.
分组 Group | 动物数量 Animal number | 每只灌喂细菌量 Amount of bacteria per single animal/CFU | 每只灌喂噬菌体量 Bacteriophage volume per single animal/PFU | 灌喂噬菌体治疗时间点 Time point of phage therapy/h |
---|---|---|---|---|
阴性对照组Negative control | 15 | — | — | — |
阳性对照组Positive control group | 15 | 1×108 | — | — |
噬菌体治疗组Therapeutic group | 15 | 1×108 | 1×108 | 4 |
噬菌体预防组Prophylactic group | 15 | 1×108 | 1×108 | 0 |
噬菌体治疗对照组Therapeutic control | 15 | — | 1×108 | 4 |
噬菌体预防对照组Prophylactic control | 15 | — | 1×108 | 0 |
表1 动物实验分组表
Table 1 Animal experiment grouping table
分组 Group | 动物数量 Animal number | 每只灌喂细菌量 Amount of bacteria per single animal/CFU | 每只灌喂噬菌体量 Bacteriophage volume per single animal/PFU | 灌喂噬菌体治疗时间点 Time point of phage therapy/h |
---|---|---|---|---|
阴性对照组Negative control | 15 | — | — | — |
阳性对照组Positive control group | 15 | 1×108 | — | — |
噬菌体治疗组Therapeutic group | 15 | 1×108 | 1×108 | 4 |
噬菌体预防组Prophylactic group | 15 | 1×108 | 1×108 | 0 |
噬菌体治疗对照组Therapeutic control | 15 | — | 1×108 | 4 |
噬菌体预防对照组Prophylactic control | 15 | — | 1×108 | 0 |
分组Group | 0 h | 2 h | 4 h | 6 h | 12 h | 24 h | 48 h |
---|---|---|---|---|---|---|---|
阴性对照组Negative control | - | - | - | - | - | - | - |
阳性对照组Positive control | - | + | + | ++ | +++ | +++ | ++ |
噬菌体治疗组Therapeutic group | - | + | ++ | ++ | + | - | - |
噬菌体预防组Prophylactic group | - | + | ++ | ++ | + | - | - |
噬菌体治疗对照组Therapeutic control | - | - | - | - | - | - | - |
噬菌体预防对照组Prophylactic control | - | - | - | - | - | - | - |
表2 肉鸡粪便性状变化表
Table 2 Change of fecal traits in broilers
分组Group | 0 h | 2 h | 4 h | 6 h | 12 h | 24 h | 48 h |
---|---|---|---|---|---|---|---|
阴性对照组Negative control | - | - | - | - | - | - | - |
阳性对照组Positive control | - | + | + | ++ | +++ | +++ | ++ |
噬菌体治疗组Therapeutic group | - | + | ++ | ++ | + | - | - |
噬菌体预防组Prophylactic group | - | + | ++ | ++ | + | - | - |
噬菌体治疗对照组Therapeutic control | - | - | - | - | - | - | - |
噬菌体预防对照组Prophylactic control | - | - | - | - | - | - | - |
分组 Group | 死亡数量 Number of deaths | 存活率 Survival rate/% |
---|---|---|
阴性对照组Negative control | 0 | 100 |
阳性对照组Positive control | 6 | 60 |
噬菌体治疗组Therapeutic group | 0 | 100 |
噬菌体预防组Prophylactic group | 1 | 93 |
噬菌体治疗对照组Therapeutic control | 0 | 100 |
噬菌体预防对照组Prophylactic control | 0 | 100 |
表3 肉鸡正常饲养15 d存活率
Table 3 Survival rate of broiler for 15 days
分组 Group | 死亡数量 Number of deaths | 存活率 Survival rate/% |
---|---|---|
阴性对照组Negative control | 0 | 100 |
阳性对照组Positive control | 6 | 60 |
噬菌体治疗组Therapeutic group | 0 | 100 |
噬菌体预防组Prophylactic group | 1 | 93 |
噬菌体治疗对照组Therapeutic control | 0 | 100 |
噬菌体预防对照组Prophylactic control | 0 | 100 |
样品 Sample | Ace指数 Ace | Chao1指数 Chao1 | 辛普森指数 Simpson | 香农指数 Shannon | 覆盖率 Coverage |
---|---|---|---|---|---|
0-A | 268.734 | 272.7 | 0.313 2 | 2.627 4 | 0.983 6 |
0-B | 312.564 | 286.2 | 0.091 8 | 3.568 5 | 0.966 8 |
2-A | 229.834 | 236.4 | 0.113 0 | 3.157 7 | 0.984 8 |
2-B | 282.828 | 269.3 | 0.084 4 | 3.404 6 | 0.982 3 |
12-A | 222.394 | 169.1 | 0.08 23 | 3.524 2 | 0.990 7 |
12-B | 207.277 | 217.3 | 0.353 1 | 2.121 1 | 0.976 8 |
48-A | 224.704 | 235.7 | 0.536 9 | 1.779 6 | 0.998 2 |
48-B | 207.677 | 299.1 | 0.111 0 | 3.074 0 | 0.991 7 |
表4 治疗组肉鸡不同感染时间测序结果
Table 4 Sequencing results of different infection time of broilers in treatment group
样品 Sample | Ace指数 Ace | Chao1指数 Chao1 | 辛普森指数 Simpson | 香农指数 Shannon | 覆盖率 Coverage |
---|---|---|---|---|---|
0-A | 268.734 | 272.7 | 0.313 2 | 2.627 4 | 0.983 6 |
0-B | 312.564 | 286.2 | 0.091 8 | 3.568 5 | 0.966 8 |
2-A | 229.834 | 236.4 | 0.113 0 | 3.157 7 | 0.984 8 |
2-B | 282.828 | 269.3 | 0.084 4 | 3.404 6 | 0.982 3 |
12-A | 222.394 | 169.1 | 0.08 23 | 3.524 2 | 0.990 7 |
12-B | 207.277 | 217.3 | 0.353 1 | 2.121 1 | 0.976 8 |
48-A | 224.704 | 235.7 | 0.536 9 | 1.779 6 | 0.998 2 |
48-B | 207.677 | 299.1 | 0.111 0 | 3.074 0 | 0.991 7 |
[1] |
BOLAND C, BERTRAND S, MATTHEUS W, et al. Extensive genetic variability linked to IS26 insertions in the fljB promoter region of atypical monophasic variants of Salmonella enterica serovar Typhimurium[J]. Applied and Environmental Microbiology, 2015, 81(9): 3169-3175.
DOI URL |
[2] |
KHALIL I A, TROEGER C, BLACKER B F, et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016[J]. The Lancet Infectious Diseases, 2018, 18(11): 1229-1240.
DOI URL |
[3] |
GARRETT V, BORNSCHLEGEL K, LANGE D, et al. A recurring outbreak of Shigella sonnei among traditionally observant Jewish children in New York City: the risks of daycare and household transmission[J]. Epidemiology and Infection, 2006, 134(6): 1231-1236.
DOI URL |
[4] |
MOHLE-BOETANI J C, STAPLETON M, FINGER R, et al. Communitywide shigellosis: control of an outbreak and risk factors in child day-care centers[J]. American Journal of Public Health, 1995, 85(6): 812-816.
DOI URL |
[5] |
SOBEL J, GOMES T A T, RAMOS R T S, et al. Pathogen-specific risk factors and protective factors for acute diarrheal illness in children aged 12-59 months in São Paulo, Brazil[J]. Clinical Infectious Diseases, 2004, 38(11): 1545-1551.
DOI URL |
[6] |
HUIJBERS P M C, BLAAK H, DE JONG M C M, et al. Role of the environment in the transmission of antimicrobial resistance to humans: a review[J]. Environmental Science & Technology, 2015, 49(20): 11993-12004.
DOI URL |
[7] | 魏麟, 朱方莉, 周洋, 等. 噬菌体在检测食源性病原菌中的应用研究进展[J]. 食品科学, 2018, 39(17): 314-322. |
WEI L, ZHU F L, ZHOU Y, et al. Progress in the application of bacteriophage in the detection of foodborne pathogenic bacteria[J]. Food Science, 2018, 39(17): 314-322. (in Chinese)
DOI URL |
|
[8] | 孙伟, 朱春宝. 噬菌体治疗细菌感染的研究[J]. 国外医药(抗生素分册), 2005, 26(2): 54-58. |
SUN W, ZHU C B. Study on bacteriophage therapy for bacterial infection[J]. World Notes on Antibiotics, 2005, 26(2): 54-58. (in Chinese) | |
[9] | ZHAO J, HE L, PAN L, et al. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli[J]. World Rabbit Science, 2017, 25(3): 273. |
[10] | MAI V, UKHANOVA M, REINHARD M K, et al. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota[J]. Bacteriophage, 2015, 5(4): e1088124. |
[11] |
ZHANG H, WANG R, BAO H D. Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken[J]. Poultry Science, 2013, 92(1): 211-217.
DOI URL |
[12] | WAITE D W, TAYLOR M W. Characterizing the avian gut microbiota: membership, driving influences, and potential function[J]. Frontiers in Microbiology, 2014, 5: 223. |
[13] |
ABREU M T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function[J]. Nature Reviews Immunology, 2010, 10(2): 131-144.
DOI URL |
[14] | 陈丹丹, 顾胜华, 张金娜, 等. 肠道菌群对免疫系统的影响及其群落分析方法[J]. 应用与环境生物学报, 2013, 19(3): 542-546. |
CHEN D D, GU S H, ZHANG J N, et al. Effect of intestinal microbes on the immune system and the latest research methods[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 542-546. (in Chinese with English abstract)
DOI URL |
|
[15] |
SOMMER F, BÄCKHED F. The gut microbiota-Masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238.
DOI URL |
[16] | GUTIÉRREZ B, DOMINGO-CALAP P. Phage therapy in gastrointestinal diseases[J]. Microorganisms, 2020, 8(9): 1420. |
[17] | MANRIQUE P, DILLS M, YOUNG M J. The human gut phage community and its implications for health and disease[J]. Viruses, 2017, 9(6): 141. |
[18] |
CEPKO L C S, GARLING E E, DINSDALE M J, et al. Myoviridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis[J]. Journal of Medical Microbiology, 2020, 69(2): 309-323.
DOI URL |
[19] | FUJIMOTO K, KIMURA Y, SHIMOHIGOSHI M, et al. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts[J]. Cell Host & Microbe, 2020, 28(3): 380-389. |
[20] | 孙宇杰, 柳佳志, 王智柔, 等. 噬菌体SYJ4及其对肉鸡痢疾治疗效果的初步探究[J]. 农业现代化研究, 2016, 37(3): 601-605. |
SUN Y J, LIU J Z, WANG Z R, et al. The therapeutic effect of bacteriophage SYJ4 on diarrhea in broiler chickens[J]. Research of Agricultural Modernization, 2016, 37(3): 601-605. (in Chinese with English abstract) | |
[21] |
EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
DOI URL |
[22] |
SHAHIN K, BOUZARI M, KOMIJANI M, et al. A new phage cocktail against multidrug, ESBL-producer isolates of Shigella sonnei and Shigella flexneri with highly efficient bacteriolytic activity[J]. Microbial Drug Resistance (Larchmont, N Y), 2020, 26(7): 831-841.
DOI URL |
[23] |
WELCH T J. Characterization of a novel Yersinia ruckeri serotype O1-specific bacteriophage with virulence-neutralizing activity[J]. Journal of Fish Diseases, 2020, 43(2): 285-293.
DOI URL |
[24] | 葛龙, 贺永超, 董强, 等. 噬菌体制剂对肉鸡生长性能、肠道菌群及免疫功能的影响[J]. 饲料研究, 2020, 43(4): 111-115. |
GE L, HE Y C, DONG Q, et al. Effect of bacteriophage preparation on growth performance, intestinal flora and immune organs of broilers[J]. Feed Research, 2020, 43(4): 111-115. (in Chinese with English abstract) | |
[25] | 张灿, 卢国民, 刘文华, 等. 灌服噬菌体对白羽肉鸡肠道菌群的影响[J]. 中国抗生素杂志, 2017, 42(9): 755-759. |
ZHANG C, LU G M, LIU W H, et al. Effects of bacteriophages on intestinal microbiota of white feather broilers by oral adminstration[J]. Chinese Journal of Antibiotics, 2017, 42(9): 755-759. (in Chinese with English abstract) | |
[26] |
WEI S, MORRISON M, YU Z. Bacterial census of poultry intestinal microbiome[J]. Poultry Science, 2013, 92(3): 671-683.
DOI URL |
[27] |
OAKLEY B B, LILLEHOJ H S, KOGUT M H, et al. The chicken gastrointestinal microbiome[J]. FEMS Microbiology Letters, 2014, 360(2): 100-112.
DOI URL |
[28] | LAMENDELLA R, DOMINGO J W S, GHOSH S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology, 2011, 11: 103. |
[29] |
SHIN N R, WHON T W, BAE J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503.
DOI URL |
[30] |
CLAVIJO V, FLÓREZ M J V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review[J]. Poultry Science, 2018, 97(3): 1006-1021.
DOI URL |
[31] |
YU X, NIU S L, TIE K Y, et al. Characteristics of the intestinal flora of specific pathogen free chickens with age[J]. Microbial Pathogenesis, 2019, 132: 325-334.
DOI URL |
[32] |
BIAN X, WANG T T, XU M, et al. Effect of Lactobacillus strains on intestinal microflora and mucosa immunity in Escherichia coli O157: H7-induced diarrhea in mice[J]. Current Microbiology, 2016, 73(1): 65-70.
DOI URL |
[33] | 王利勤. 鸡源致病性大肠埃希菌耐药基因及毒力基因检测研究[D]. 杨凌: 西北农林科技大学, 2012. |
WANG L Q. Study on resistance genes and virulence genes of pathogenic Escherichia coli isolates from chickens[D]. Yangling: Northwest A & F University, 2012. (in Chinese with English abstract) | |
[34] | VON KLITZING E, EKMEKCIU I, KÜHL A A, et al. Multidrug-resistant Pseudomonas aeruginosa aggravates inflammatory responses in murine chronic colitis[J]. Scientific Reports, 2018, 8: 6685. |
[1] | 徐海, 王健, 郭长明, 董洪燕, 邓碧华, 侯继波. 单域抗体T7噬菌体展示文库构建与鉴定[J]. 浙江农业学报, 2021, 33(1): 27-33. |
[2] | 刘江英, 朱建津, 蒋蓉, 刘子微. 多菌种联合发酵饲料对肉鸡抗沙门氏菌感染能力的影响[J]. 浙江农业学报, 2019, 31(2): 229-234. |
[3] | 肖英平, 杨彩梅, 代兵, 李开锋, 陈镜刚, 杨华. 基于高通量测序的丁酸梭菌对肉鸡盲肠菌群结构的影响[J]. 浙江农业学报, 2017, 29(3): 373-379. |
[4] | 靳二辉, 周金星, 任曼, 胡倩倩, 金光明, 李升和. 酵母硒和硼联合添加对肉鸡免疫器官组织结构及免疫功能的影响[J]. 浙江农业学报, 2017, 29(11): 1783-1795. |
[5] | 邢晋祎, 王晓培, 宋琪. 肉鸡MTHFR基因的克隆和表达水平研究[J]. 浙江农业学报, 2016, 28(12): 2033-2039. |
[6] | 刘玺, 潘航, NarayanPaudyal, 方维焕, 李肖梁. 禽肉弯曲菌污染分析及冷藏条件下失活动力学特征[J]. 浙江农业学报, 2016, 28(11): 1834-1841. |
[7] | 张俊, 朱建津, 刘江英, 蒋蓉, 成向荣. 益生菌发酵产物对肉鸡肠道形态和肠道屏障功能的影响[J]. 浙江农业学报, 2016, 28(10): 1657-1662. |
[8] | 刘红露,范磊,戴茜茜, 张飞燕,潘康成*. 面包酵母硒与酪酸梭菌制剂对肉鸡生长、抗氧化和肠道菌群的影响[J]. 浙江农业学报, 2015, 27(9): 1529-. |
[9] | 张变英,贺东昌*,王芳,张红岗,张元庆,上官明军,武霞,樊爱芳. 日粮添加维生素D3对肉鸡生产性能、屠宰性能、免疫功能和肌肉品质的影响[J]. 浙江农业学报, 2015, 27(8): 1350-. |
[10] | 赵燕,吴春琴,孙思维,金俊杰*. 辐照豆粕对肉鸡生产性能、免疫及抗氧化功能的影响[J]. 浙江农业学报, 2015, 27(6): 939-. |
[11] | 赵燕1,2,李建新3,谢炳忠3,李进军2,田勇2,卢立志1,2,*. 紫杉醇在鸡肉中的沉积及对Bcl\|2基因表达的影响 [J]. 浙江农业学报, 2014, 26(6): 1462-. |
[12] | 朱凝瑜,贝亦江,郑天伦,孔蕾,陈健舜. 中华鳖肠道及其养殖水体菌群比较 [J]. 浙江农业学报, 2014, 26(5): 1176-. |
[13] | 王虹玲1,姜诗文1,刘丹丹1,汪琢1,马爽1,孙天利2. 复合微生态制剂在肉鸡生产上的应用[J]. 浙江农业学报, 2014, 26(5): 1341-. |
[14] | 杨会玲;柳永;许少春;李艳丽;许尧兴;* . PCRDGGE技术分析合生素对肉仔鸡盲肠菌群结构的影响[J]. , 2012, 24(1): 0-31. |
[15] | 蔡丽萍;徐海圣*;何琳;舒妙安. PCR-DGGE技术分析不同地区野生锯缘青蟹肠道菌群多样性[J]. , 2011, 23(2): 0-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||