浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 598-614.DOI: 10.3969/j.issn.1004-1524.2023.03.13
杨清1(), 刘胜红1, 黄二宾1, 杜嵘宇1, 王芳1,2, 邓佳1,3,*(
)
收稿日期:
2022-09-16
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*邓佳,E-mail:dengjia1983@163.com
作者简介:
杨清(1997—),女,云南文山人,硕士研究生,研究方向为经济林栽培与利用。E-mail:1803504502@qq.com
基金资助:
YANG Qing1(), LIU Shenghong1, HUANG Erbin1, DU Rongyu1, WANG Fang1,2, DENG Jia1,3,*(
)
Received:
2022-09-16
Online:
2023-03-25
Published:
2023-04-07
摘要:
本实验以采后葡萄柚果实为材料,使用1.5%的羧甲基壳聚糖(CMCS)溶液和无菌水浸泡诱导24 h后,研究其对指状青霉(Penicillium digitatum)和扩展青霉(Penicillium expansum)引起的绿霉病的抗病效果,结果表明,CMCS处理组可显著降低P. digitatum和P. expansum引起的绿霉病发病率且病斑直径增长速度受到抑制。以此为基础,对上述CMCS和无菌水处理的葡萄柚果皮进行无参转录组测序,筛选CMCS诱导下的差异表达基因(DEGs)。结果表明,从经CMCS处理的葡萄柚果皮共获得85个差异表达基因,其中上调基因67个,下调基因18个,对差异表达的基因进行GO及KEGG分析。这些差异表达基因的功能归类于生物过程、细胞组分及分子功能3大类37个GO条目,并显著富集在20条KEGG代谢通路中。同时,对参与其中的WRKY基因进行了挖掘,筛选出最有可能参与植物抗病过程的5个WRKY基因均为上调表达,与拟南芥的进化树分析表明,筛选出的5个WRKY基因与拟南芥基因功能类似。涉及的DEGs功能主要与次生代谢、植物激素信号转导、过氧化物酶体、内质网中的蛋白质加工、谷胱甘肽代谢、苯丙烷生物合成等途径有关,8个关键差异表达基因qRT-PCR验证结果表明,调控趋势与转录组学趋势一致。本研究结果可为CMCS诱导葡萄柚抗性相关基因的挖掘和葡萄柚采后分子抗性机制的研究提供理论依据。
中图分类号:
杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614.
YANG Qing, LIU Shenghong, HUANG Erbin, DU Rongyu, WANG Fang, DENG Jia. Carboxymethyl chitosan-induced transcriptome WRKY genes analysis and resistance-related gene mining in grapefruit fruit[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 598-614.
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
WRKY40 | TCTTGTGTTGGGATCGAGGC | CCCAAGCTGTCCCGTAAAGA |
WRKY53 | AGTTCTGCCGCATCAATGGA | TCCGAACTCCCTGAGCTACA |
WRKY24 | TAGAGCCAAAGACGAGCCAC | TGTCAAGTTCAGTGTGGCCT |
WRKY54 | GGAAAAGATGGCGAAGGAGC | CTCAGCCGAAACCAACCCAT |
GGCT2;2 | TCATCAAGGACTACAGGCGC | CCCCTGTGATCAATGCATGC |
NCED1 | CCGTTTGTTGGCCATGTCTG | TCATCGTGGACTTGAGCTGG |
PME7 | CTTTACCCACCATGCAAGCG | TGACTCTCCAAACGGAAGCC |
LOX2.1 | TACGTGCCCAGAGATGAAGC | TGGCCTCGAGTGATGGAAAC |
Actin | CATCCCTCAGCACCTTCC | CCAACCTTAGCACTTCTCC |
表1 qRT-PCR用引物序列
Table 1 Primer sequences used in qRT-PCR
引物名称 Primer name | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
WRKY40 | TCTTGTGTTGGGATCGAGGC | CCCAAGCTGTCCCGTAAAGA |
WRKY53 | AGTTCTGCCGCATCAATGGA | TCCGAACTCCCTGAGCTACA |
WRKY24 | TAGAGCCAAAGACGAGCCAC | TGTCAAGTTCAGTGTGGCCT |
WRKY54 | GGAAAAGATGGCGAAGGAGC | CTCAGCCGAAACCAACCCAT |
GGCT2;2 | TCATCAAGGACTACAGGCGC | CCCCTGTGATCAATGCATGC |
NCED1 | CCGTTTGTTGGCCATGTCTG | TCATCGTGGACTTGAGCTGG |
PME7 | CTTTACCCACCATGCAAGCG | TGACTCTCCAAACGGAAGCC |
LOX2.1 | TACGTGCCCAGAGATGAAGC | TGGCCTCGAGTGATGGAAAC |
Actin | CATCCCTCAGCACCTTCC | CCAACCTTAGCACTTCTCC |
图1 CMCS诱导处理葡萄柚果实接种P. digitatum与P. expansum的发病情况 图中没有相同字母代表差异显著(P<0.05),下同。
Fig.1 Incidence rate of grape fruit in CMCS treatment inoculated with P.digitatum and P.expansum Different level in the picture represented significant differences(P<0.05). The same as below.
样品名称 Sample | 原始数据 Raw data | 纯净数据 Clean data | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|
CK-24 h-1 | 6 375 427 500 | 6 268 838 074 | 98.29 | 94.57 | 43.92 |
CK-24 h-2 | 6 494 895 900 | 6 402 506 126 | 98.22 | 94.30 | 43.74 |
CK-24 h-3 | 5 569 391 400 | 5 487 236 235 | 98.07 | 93.94 | 43.70 |
CMCS-24 h-1 | 6 237 662 100 | 6 161 803 163 | 98.30 | 94.56 | 43.82 |
CMCS-24 h-2 | 5 987 908 500 | 5 917 842 274 | 98.14 | 94.10 | 43.65 |
CMCS-24 h-3 | 5 925 497 100 | 5 842 851 149 | 98.11 | 94.07 | 43.78 |
表2 碱基信息统计表
Table 2 Statistical table of base information
样品名称 Sample | 原始数据 Raw data | 纯净数据 Clean data | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|
CK-24 h-1 | 6 375 427 500 | 6 268 838 074 | 98.29 | 94.57 | 43.92 |
CK-24 h-2 | 6 494 895 900 | 6 402 506 126 | 98.22 | 94.30 | 43.74 |
CK-24 h-3 | 5 569 391 400 | 5 487 236 235 | 98.07 | 93.94 | 43.70 |
CMCS-24 h-1 | 6 237 662 100 | 6 161 803 163 | 98.30 | 94.56 | 43.82 |
CMCS-24 h-2 | 5 987 908 500 | 5 917 842 274 | 98.14 | 94.10 | 43.65 |
CMCS-24 h-3 | 5 925 497 100 | 5 842 851 149 | 98.11 | 94.07 | 43.78 |
样品名称 Sample | 总碱基数 Total | Unmapped/% | Unique mapped/% | Multiple mapped/% | Total mapped/% |
---|---|---|---|---|---|
CK-24 h-1 | 42 052 500 | 18.32 | 79.85 | 1.83 | 81.68 |
CK-24 h-2 | 42 897 144 | 17.75 | 80.50 | 1.75 | 82.25 |
CK-24 h-3 | 36 761 526 | 17.92 | 80.25 | 1.83 | 82.08 |
CMCS-24 h-1 | 41 287 708 | 18.13 | 80.12 | 1.75 | 81.87 |
CMCS-24 h-2 | 39 616 648 | 17.89 | 80.37 | 1.74 | 82.11 |
CMCS-24 h-3 | 39 131 608 | 17.76 | 80.36 | 1.89 | 82.24 |
表3 基因比对率统计表
Table 3 Statistical table of gene matching rate
样品名称 Sample | 总碱基数 Total | Unmapped/% | Unique mapped/% | Multiple mapped/% | Total mapped/% |
---|---|---|---|---|---|
CK-24 h-1 | 42 052 500 | 18.32 | 79.85 | 1.83 | 81.68 |
CK-24 h-2 | 42 897 144 | 17.75 | 80.50 | 1.75 | 82.25 |
CK-24 h-3 | 36 761 526 | 17.92 | 80.25 | 1.83 | 82.08 |
CMCS-24 h-1 | 41 287 708 | 18.13 | 80.12 | 1.75 | 81.87 |
CMCS-24 h-2 | 39 616 648 | 17.89 | 80.37 | 1.74 | 82.11 |
CMCS-24 h-3 | 39 131 608 | 17.76 | 80.36 | 1.89 | 82.24 |
图4 Unigene长度分布图(A)、四大数据库注释维恩图(B)和Nr注释物种分布图(C)
Fig.4 Diagram of Unigene length distribution (A)、Four databases annotated Venn diagram (B) and cartograph of the number of Nr comparison speci (C)
基因编号 Gene ID | 对照组表达量均值 CK_mean | 处理组表达量均值 CMCS_mean | 差异倍数 log2(FC) | P | FDR | 基因名称 Gene name |
---|---|---|---|---|---|---|
Unigene 0016512 | 5.20 | 33.64 | 2.69 | 0.001 | 0.091 | WRKY40 |
Unigene 0022945 | 2.24 | 14.47 | 2.69 | 0.008 | 0.326 | WRKY53 |
Unigene 0004228 | 0.61 | 3.18 | 2.38 | 0.009 | 0.340 | WRKY24 |
Unigene 0030218 | 0.78 | 2.25 | 1.53 | 0.002 | 0.170 | WRKY54 |
Unigene 0015122 | 4.29 | 9.36 | 1.13 | 0.027 | 0.572 | WRKY30 |
表4 CMCS诱导WRKY转录因子的表达量
Table 4 Expression of WRKY transcription factors induced by CMCS
基因编号 Gene ID | 对照组表达量均值 CK_mean | 处理组表达量均值 CMCS_mean | 差异倍数 log2(FC) | P | FDR | 基因名称 Gene name |
---|---|---|---|---|---|---|
Unigene 0016512 | 5.20 | 33.64 | 2.69 | 0.001 | 0.091 | WRKY40 |
Unigene 0022945 | 2.24 | 14.47 | 2.69 | 0.008 | 0.326 | WRKY53 |
Unigene 0004228 | 0.61 | 3.18 | 2.38 | 0.009 | 0.340 | WRKY24 |
Unigene 0030218 | 0.78 | 2.25 | 1.53 | 0.002 | 0.170 | WRKY54 |
Unigene 0015122 | 4.29 | 9.36 | 1.13 | 0.027 | 0.572 | WRKY30 |
代谢通路 Pathway | 通路编号 Pathway ID | P | 上调基因 Up-regulated gene | 下调基因 Down-regulated gene |
---|---|---|---|---|
戊糖、葡萄糖醛酸转换 Pentose and glucuronate interconversions | ko00040 | 0.010 | — | PME44、PME7 |
亚油酸代谢 Linoleic acid metabolism | ko00591 | 0.026 | — | LOX2.1 |
维生素B6代谢 Vitamin B6 metabolism | ko00750 | 0.041 | — | PS2 |
油菜素类酯生物合成 Brassinosteroid biosynthesis | ko00905 | 0.044 | — | CYP92C6 |
代谢途径 Metabolic pathways | ko01100 | 0.048 | AGT1、NCED1、PS2、 TENA_E、GGCT2;2 | PER63、LOX2.1、PME44、 PME7、CYP92C6 |
硫胺素代谢 Thiamine metabolism | ko00730 | 0.066 | TENA_E | — |
类胡萝卜素生物合成 Carotenoid biosynthesis | ko00906 | 0.122 | NCED1 | — |
植物昼夜节律 Circadian rhythm-plant | ko04712 | 0.122 | APRR5 | — |
α-亚麻酸代谢 α-Linolenic acid metabolism | ko00592 | 0.132 | — | LOX2.1 |
丙氨酸、天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism | ko00250 | 0.150 | AGT1 | |
内质网中的蛋白质加工 Protein processing in endoplasmic reticulum | ko04141 | 0.179 | HSP17.4B/HSP22.0 | — |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine, serine and threonine metabolism | ko00260 | 0.207 | AGT1 | — |
谷胱甘肽代谢 Glutathione metabolism | ko00480 | 0.266 | GGCT2;2 | — |
乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism | ko0063 | 0.267 | AGT1 | — |
次生代谢产物生物合成 Biosynthesis of secondary metabolites | ko01110 | 0.270 | AGT1、NCED1 | PER63、LOX2.1、CYP92C6 |
过氧化物酶体 Peroxisome | ko04146 | 0.271 | AGT1 | — |
代谢通路 Pathway | 通路编号 Pathway ID | P | 上调基因 Up-regulated gene | 下调基因 Down-regulated gene |
苯丙烷生物合成 Phenylpropanoid biosynthesis | ko00940 | 0.295 | — | PER63 |
MAPK植物信号通路 MAPK signaling pathway-plant | ko04016 | 0.322 | PP2C | — |
植物激素信号转导 Plant hormone signal transduction | ko04075 | 0.387 | PP2C | — |
碳代谢Carbon metabolism | ko01200 | 0.657 | AGT1 | — |
表5 CMCS诱导葡萄柚24 h的差异基因
Table 5 CMCS induced 24 h differential genes in grapefruit
代谢通路 Pathway | 通路编号 Pathway ID | P | 上调基因 Up-regulated gene | 下调基因 Down-regulated gene |
---|---|---|---|---|
戊糖、葡萄糖醛酸转换 Pentose and glucuronate interconversions | ko00040 | 0.010 | — | PME44、PME7 |
亚油酸代谢 Linoleic acid metabolism | ko00591 | 0.026 | — | LOX2.1 |
维生素B6代谢 Vitamin B6 metabolism | ko00750 | 0.041 | — | PS2 |
油菜素类酯生物合成 Brassinosteroid biosynthesis | ko00905 | 0.044 | — | CYP92C6 |
代谢途径 Metabolic pathways | ko01100 | 0.048 | AGT1、NCED1、PS2、 TENA_E、GGCT2;2 | PER63、LOX2.1、PME44、 PME7、CYP92C6 |
硫胺素代谢 Thiamine metabolism | ko00730 | 0.066 | TENA_E | — |
类胡萝卜素生物合成 Carotenoid biosynthesis | ko00906 | 0.122 | NCED1 | — |
植物昼夜节律 Circadian rhythm-plant | ko04712 | 0.122 | APRR5 | — |
α-亚麻酸代谢 α-Linolenic acid metabolism | ko00592 | 0.132 | — | LOX2.1 |
丙氨酸、天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism | ko00250 | 0.150 | AGT1 | |
内质网中的蛋白质加工 Protein processing in endoplasmic reticulum | ko04141 | 0.179 | HSP17.4B/HSP22.0 | — |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine, serine and threonine metabolism | ko00260 | 0.207 | AGT1 | — |
谷胱甘肽代谢 Glutathione metabolism | ko00480 | 0.266 | GGCT2;2 | — |
乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism | ko0063 | 0.267 | AGT1 | — |
次生代谢产物生物合成 Biosynthesis of secondary metabolites | ko01110 | 0.270 | AGT1、NCED1 | PER63、LOX2.1、CYP92C6 |
过氧化物酶体 Peroxisome | ko04146 | 0.271 | AGT1 | — |
代谢通路 Pathway | 通路编号 Pathway ID | P | 上调基因 Up-regulated gene | 下调基因 Down-regulated gene |
苯丙烷生物合成 Phenylpropanoid biosynthesis | ko00940 | 0.295 | — | PER63 |
MAPK植物信号通路 MAPK signaling pathway-plant | ko04016 | 0.322 | PP2C | — |
植物激素信号转导 Plant hormone signal transduction | ko04075 | 0.387 | PP2C | — |
碳代谢Carbon metabolism | ko01200 | 0.657 | AGT1 | — |
处理 treatment | 基因表达量Gene expression level | |||||
---|---|---|---|---|---|---|
PP2C | AGT1 | HSP17.4B | HSP22.0 | GGCT2;2 | NCED1 | |
CK | 4.11±0.66 b | 7.01±1.22 b | 1.70±0.20 b | 8.50±0.41 b | 1.83±0.28 b | 1.12±0.41 b |
CMCS | 8.72±1.49 a | 24.10±3.86 a | 5.88±1.17 a | 25.16±2.00 a | 9.25±0.44 a | 6.34±1.50 a |
表6 CMCS诱导葡萄柚抗病性相关的上调差异基因表达量
Table 6 CMCS induced up-regulated differential gene expression related to disease resistance in grapefruit
处理 treatment | 基因表达量Gene expression level | |||||
---|---|---|---|---|---|---|
PP2C | AGT1 | HSP17.4B | HSP22.0 | GGCT2;2 | NCED1 | |
CK | 4.11±0.66 b | 7.01±1.22 b | 1.70±0.20 b | 8.50±0.41 b | 1.83±0.28 b | 1.12±0.41 b |
CMCS | 8.72±1.49 a | 24.10±3.86 a | 5.88±1.17 a | 25.16±2.00 a | 9.25±0.44 a | 6.34±1.50 a |
处理 treatment | 基因表达量Gene expression level | ||||
---|---|---|---|---|---|
PME44 | PME7 | LOX2.1 | PER63 | CYP92C6 | |
CK | 9.31±1.43 a | 177.55±33.56 a | 188.20±24.90 a | 18.11±1.93 a | 166.46±25.77 a |
CMCS | 4.05±0.86 b | 64.91±17.77 b | 80.45±16.96 b | 8.12±2.10 b | 78.37±14.12 b |
表7 CMCS诱导葡萄柚抗病性相关的下调差异基因表达量
Table 7 CMCS induced down-regulated differential gene expression related to disease resistance in grapefruit
处理 treatment | 基因表达量Gene expression level | ||||
---|---|---|---|---|---|
PME44 | PME7 | LOX2.1 | PER63 | CYP92C6 | |
CK | 9.31±1.43 a | 177.55±33.56 a | 188.20±24.90 a | 18.11±1.93 a | 166.46±25.77 a |
CMCS | 4.05±0.86 b | 64.91±17.77 b | 80.45±16.96 b | 8.12±2.10 b | 78.37±14.12 b |
图8 WRKY差异表达基因与抗病性相关差异表达基因的相关性聚类热图
Fig.8 Heat map of clustering between WRKY differential expressed genes and disease-resistance related differential expressed genes
[1] | 朱丽华. 柑橘类水果采后病害及其防治[J]. 世界农药, 2005, 27(2): 18-21. |
ZHU L H. Postharvest diseases of citrus fruit s and their control[J]. World Pesticide, 2005, 27(2): 18-21. (in Chinese with English abstract) | |
[2] | 梁攀, 李悦妍, 黄少云, 等. 柑橘类水果贮藏保鲜技术研究进展[J]. 包装工程, 2021, 42(13): 57-66. |
LIANG P, LI Y Y, HUANG S Y, et al. Research progress of postharvest storage and preservation technology of Citrus fruits[J]. Packaging Engineering, 2021, 42(13): 57-66. (in Chinese with English abstract) | |
[3] | 范春丽, 刘晓娟, 曲金柱. 壳聚糖涂膜处理对山楂贮藏保鲜效果的影响[J]. 贵州农业科学, 2021, 49(6): 108-112. |
FAN C L, LIU X J, QU J Z. Effect of chitosan coating treatment on preservation of hawthorn[J]. Guizhou Agricultural Sciences, 2021, 49(6): 108-112. (in Chinese with English abstract) | |
[4] |
EL GHAOUTH A. Effect of chitosan on cucumber plants: suppression of Pythium aphanidermatum and induction of defense reactions[J]. Phytopathology, 1994, 84(3): 313.
DOI URL |
[5] | 颜海燕. 壳聚糖处理对樱桃番茄及杏贮藏品质及活性氧代谢的影响[D]. 石河子: 石河子大学, 2010. |
YAN H Y. Influence of chitosan treatment on storage quality of cherry tomato, apricot and active oxygen metabolism[D]. Shihezi: Shihezi University, 2010. (in Chinese with English abstract) | |
[6] | 于汉寿, 吴汉章, 杨冰. 壳聚糖抑制植物病害的研究进展[J]. 天然产物研究与开发, 2000, 12(3): 94-97. |
YU H S, WU H Z, YANG B. Recent advances of chitosan in suppression of plant diseases[J]. Natural Product Research and Development, 2000, 12(3): 94-97. (in Chinese with English abstract) | |
[7] |
CONRATH U, DOMARD A, KAUSS H. Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures[J]. Plant Cell Reports, 1989, 8(3): 152-155.
DOI PMID |
[8] | 陈晓刚, 陈忻, 粱结玲. 优化壳聚糖保鲜液对非洲菊切花保鲜的影响[J]. 食品科学, 2007, 28(10): 545-548. |
CHEN X G, CHEN X, LIANG J L. Study on preservation effect of chitosan on cut Gerbera flower[J]. Food Science, 2007, 28(10): 545-548. (in Chinese with English abstract) | |
[9] | SINGH D K, RAY A R. Biomedical applications of chitin, chitosan, and their derivatives[J]. Journal of Macromolecular Science, Part C, 2000, 40(1): 69-83. |
[10] |
BI Y, TIAN S P, ZHAO J, et al. Harpin induces local and ystemic resistance against Trichothecium roseumin harvested ami melons[J]. Postharvest Biology and Technology, 2005, 38(2): 183-187.
DOI URL |
[11] | 周鹏飞. 柑橘溃疡病相关WRKY转录因子和PR基因的筛选与功能分析[D]. 重庆: 西南大学, 2017. |
ZHOU P F. Screening and functional analysis of WRKY transcription factor and pathogenesis-related protein genes associated with Citrus canker[D]. Chongqing: Southwest University, 2017. (in Chinese with English abstract) | |
[12] |
JOURNOT-CATALINO N, SOMSSICH I E, ROBY D, et al. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. The Plant Cell, 2006, 18(11): 3289-3302.
DOI URL |
[13] | DESLANDES L, OLIVIER J, THEULIERES F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2404-2409. |
[14] | 夏正林. GmWRKY16异源转化拟南芥增强抗旱性和耐盐性的功能研究[D]. 广州: 华南农业大学, 2018. |
XIA Z L. Functional analysis of GmWRKY16 enhances drought and salt tolerance in Arabidopsis[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract) | |
[15] | ARRAÑO-SALINAS P, DOMÍNGUEZ-FIGUEROA J, HERRERA-VÁSQUEZ A, et al. WRKY7,-11 and -17 transcription factors are modulators of the bZIP28 branch of the unfolded protein response during PAMP-triggered immunity in Arabidopsis thaliana[J]. Plant Science: an International Journal of Experimental Plant Biology, 2018, 277: S0168-S9452(18)30794-5[pii]. |
[16] |
杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220.
DOI |
YANG X X, TANG M S, ZHANG B. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. (in Chinese with English abstract)
DOI |
|
[17] | ZHANG F Y, FU X Q, LV Z Y, et al. Type 2C phosphatase 1 of Artemisia annua L. is a negative regulator of ABA signaling[J]. BioMed Research International, 2014, 2014: 521794. |
[18] |
REYES D, RODRÍGUEZ D, GONZÁLEZ-GARCÍA M P, et al. Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis[J]. Plant Physiology, 2006, 141(4): 1414-1424.
DOI URL |
[19] |
IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2001, 27(4): 325-333.
DOI URL |
[20] | 胡晨阳. 杨树耐干旱胁迫的生理机制及转录组分析[D]. 武汉: 武汉轻工大学, 2016: 88-97. |
HU C Y. Physiological mechanism and transcriptome analysis of the tolerance of poplar to drought stress[D]. Wuhan: Wuhan Polytechnic University, 2016: 88-97. (in Chinese with English abstract) | |
[21] |
RODRIGO M J, ALQUEZAR B, ZACARÍAS L. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck)[J]. Journal of Experimental Botany, 2006, 57(3): 633-643.
DOI URL |
[22] | 杨琳. L-Ser对拟南芥和浮萍生长发育的影响及其代谢途径关键酶SGAT的研究[D]. 天津: 南开大学, 2013. |
YANG L. Effects of L-Ser on Arabidopsis and duckweed (Lemna minor)and the investigation of its metabolic pathway key enzyme SGAT[D]. Tianjin: Nankai University, 2013. (in Chinese with English abstract) | |
[23] |
TALER D, GALPERIN M, BENJAMIN I, et al. Plant eR genes that encode photorespiratory enzymes confer resistance against disease[J]. The Plant Cell, 2004, 16(1): 172-184.
DOI URL |
[24] | 罗玲, 许肖恒, 杨康, 等. 非生物胁迫下植物衰老和热激蛋白响应[J]. 草业科学, 2020, 37(11): 2320-2333. |
LUO L, XU X H, YANG K, et al. Senescence and heat shock protein in plants in response to abiotic stress[J]. Pratacultural Science, 2020, 37(11): 2320-2333. (in Chinese with English abstract) | |
[25] | 徐海, 宋波, 顾宗福, 等. 植物耐热机理研究进展[J]. 江苏农业学报, 2020, 36(1): 243-250. |
XU H, SONG B, GU Z F, et al. Advances in heat tolerance mechanisms of plants[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 243-250. (in Chinese with English abstract) | |
[26] |
WANG Y, ZHANG W Z, SONG L F, et al. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1201-1211.
DOI URL |
[27] |
LOU L L, KANG J Q, PANG H X, et al. Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism[J]. International Journal of Molecular Sciences, 2017, 18(8): 1628.
DOI URL |
[28] | 张倩, 鲍依群, 谭小云. 拟南芥果胶甲酯化酶基因PME17在抵御丁香假单胞杆菌番茄致病变种DC3000株中的功能[J]. 植物生理学报, 2015, 51(7): 1061-1066. |
ZHANG Q, BAO Y Q, TAN X Y. Functional analysis of Arabidopsis thaliana pectin methylesterase gene PME17 in immunity against Pseudomonas syringae pv. tomato DC3000[J]. Plant Physiology Journal, 2015, 51(7): 1061-1066. (in Chinese with English abstract)
DOI URL |
|
[29] |
齐秀东, 李海山, 魏建梅, 等. 采后嘎拉苹果果实细胞壁代谢及关键酶基因表达特性研究[J]. 华北农学报, 2012, 27(2): 55-60.
DOI |
QI X D, LI H S, WEI J M, et al. The characteristics of cell wall metabolism and key enzyme genes expression in postharvest gala apple fruit[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(2): 55-60. (in Chinese with English abstract) | |
[30] | 林馨颖, 王鹏杰, 陈雪津, 等. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析[J]. 茶叶科学, 2021, 41(4): 482-496. |
LIN X Y, WANG P J, CHEN X J, et al. Identification of LOX gene family in Camellia sinensis and expression analysis in the process of white tea withering[J]. Journal of Tea Science, 2021, 41(4): 482-496. (in Chinese with English abstract) | |
[31] |
LIM C W, HAN S W, HWANG I S, et al. The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response[J]. Plant and Cell Physiology, 2015, 56(5): 930-942.
DOI PMID |
[32] |
LI Q, QIN X J, QI J J, et al. CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to Citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification[J]. Horticulture Research, 2020, 7: 192.
DOI |
[33] | 李达. 茶树细胞色素CYP82Ds基因克隆及其功能验证[D]. 杭州: 浙江大学, 2021. |
LI D. Cloning and function analysis of CYP82Ds genes from Camellia sinensis[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[34] |
GOGOLEV Y V, GORINA S S, GOGOLEVA N E, et al. Green leaf divinyl ether synthase: gene detection, molecular cloning and identification of a unique CYP74B subfamily member[J]. Biochimica et Biophysica Acta, 2012, 1821(2): 287-294.
DOI PMID |
[1] | 徐志荣, 傅雁辉, 赵英杰, 王婷, 魏赛金. 链霉菌JD211发酵液对水稻防御稻瘟病菌诱导抗性的作用[J]. 浙江农业学报, 2017, 29(6): 971-976. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||