[1] |
孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215.
|
|
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. (in Chinese with English abstract)
|
[2] |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 1419.
|
[3] |
刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.
|
|
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract)
|
[4] |
侯志松, 冀金泉, 李国厚, 等. 集成学习与迁移学习的作物病害图像识别算法[J]. 中国科技论文, 2021, 16(7): 708-714.
|
|
HOU Z S, JI J Q, LI G H, et al. Crop disease image recognition algorithm based on ensemble learning and transfer learning[J]. China Sciencepaper, 2021, 16(7): 708-714. (in Chinese with English abstract)
|
[5] |
刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74.
|
|
LIU A Y, WU Y Z, ZHU X N, et al. Corn disease recognition based on deep residual network[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1): 67-74. (in Chinese with English abstract)
|
[6] |
郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
|
|
GUO X Q, FAN T J, SHU X. Tomato leaf diseases recognition based on improved Multi-Scale AlexNet[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169. (in Chinese with English abstract)
|
[7] |
赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
|
|
ZHAO L X, HOU F D, LYU Z C, et al. Image recognition of cotton leaf diseases and pests based on transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. (in Chinese with English abstract)
|
[8] |
ALBELWI S. Survey on self-supervised learning: auxiliary pretext tasks and contrastive learning methods in imaging[J]. Entropy, 2022, 24(4): 551.
|
[9] |
张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39.
|
|
ZHANG C S, CHEN J, LI Q L, et al. Deep contrastive learning: a survey[J]. Acta Automatica Sinica, 2023, 49(1): 15-39. (in Chinese with English abstract)
|
[10] |
CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6-12, 2020, Vancouver, BC, Canada. New York: ACM, 2020: 9912-9924.
|
[11] |
GRILL J B, STRUB F, ALTCH’E F, et al. Bootstrap your own latent: a new approach to self-supervised learning[EB/OL].(2020-06-13) [2023-01-30]. https://arxiv.org/abs/2006.07733.
|
[12] |
田浩江, 路娜, 崔二洋. 基于改进对比学习的道路裂缝图像分类[J]. 计算机系统应用, 2023, 32(2): 310-315.
|
|
TIAN H J, LU N, CUI E Y. Road crack image classification based on improved contrastive learning[J]. Computer Systems and Applications, 2023, 32(2): 310-315. (in Chinese with English abstract)
|
[13] |
奚琰. 基于对比学习的细粒度遮挡人脸表情识别[J]. 计算机系统应用, 2022, 31(11): 175-183.
|
|
XI Y. Fine-grained occluded facial expression recognition based on contrastive learning[J]. Computer Systems and Applications, 2022, 31(11): 175-183. (in Chinese with English abstract)
|
[14] |
GitHub Inc. linusericsson/ssl-transfer: code[EB/OL]. [2023-01-30]. https://github.com/linusericsson/ssl-transfer.
|
[15] |
SOHN K. Improved deep metric learning with multi-class N-pair loss objective[EB/OL]. [2023-01-30]. https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.
|
[16] |
陈伟文, 邝祝芳, 王忠伟. 基于卷积神经网络的种苗病害识别方法[J]. 中南林业科技大学学报, 2022, 42(7): 35-43.
|
|
CHEN W W, KUANG Z F, WANG Z W. Method of seed disease recognition based on convolutional neural network[J]. Journal of Central South University of Forestry & Technology, 2022, 42(7): 35-43. (in Chinese with English abstract)
|
[17] |
MOHAMETH F, CHEN B C, SADA K A. Plant disease detection with deep learning and feature extraction using plant village[J]. Journal of Computer and Communications, 2020, 8(6): 10-22.
|
[18] |
TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
|
[19] |
ZHU D Q, FENG Q, ZHANG J H, et al. Cotton disease identification method based on pruning[J]. Frontiers in Plant Science, 2022, 13: 1038791.
|