浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1357-1367.DOI: 10.3969/j.issn.1004-1524.20230926
张晋1(), 吴晓丽1,2, 田雨薇3, 赵珂1, 李欢欢1, 达色4, 次仁达杰4, 陈黎洪1, 唐宏刚1,*(
)
收稿日期:
2023-07-28
出版日期:
2024-06-25
发布日期:
2024-07-02
作者简介:
张晋(1990—),男,山东聊城人,博士,副研究员,研究方向为动物源产品加工副产物综合利用。E-mail: zhangjin@zaas.ac.cn
通讯作者:
*唐宏刚,E-mail: zaastang@163.com
基金资助:
ZHANG Jin1(), WU Xiaoli1,2, TIAN Yuwei3, ZHAO Ke1, LI Huanhuan1, Dase 4, Cirendajie 4, CHEN Lihong1, TANG Honggang1,*(
)
Received:
2023-07-28
Online:
2024-06-25
Published:
2024-07-02
摘要:
以牦牛血粉为原料,通过超声波辅助酶解技术提取氯化血红素,优化制备工艺并进行品质评价。以超声波辅助酶解时间、酶/底物浓度和超声比功率为自变量,以纯度为响应变量,采用Box-Behnken响应面设计优化提取工艺;通过紫外-可见分光光度计、色度仪、傅立叶转换红外光谱仪表征样品的纯度、得率、色度、化学结构等理化性质。结果表明,超声波辅助酶解时间、酶/底物浓度和超声比功率对氯化血红素提取物纯度均具有显著影响(P<0.05);经响应面优化后确定的最佳提取工艺为超声波辅助酶解时间4 h、酶/底物浓度17 U·mg-1和超声比功率800 W·L-1,在此条件下氯化血红素提取纯度为14.89%,得率达63.30%。与普通酶解提取工艺相比,超声波辅助酶解提取得率和纯度分别提高1.29倍和1.07倍(P<0.05),提取样品的色度和化学结构与氯化血红素标准品更相近。综上所述,超声波辅助法(800 W·L-1超声比功率下处理4 h)能在不改变理化性质的前提下显著提高从牦牛血粉中酶解提取氯化血红素的纯度和得率。
中图分类号:
张晋, 吴晓丽, 田雨薇, 赵珂, 李欢欢, 达色, 次仁达杰, 陈黎洪, 唐宏刚. 超声波辅助酶解牦牛血粉提取氯化血红素的响应面工艺优化及品质表征[J]. 浙江农业学报, 2024, 36(6): 1357-1367.
ZHANG Jin, WU Xiaoli, TIAN Yuwei, ZHAO Ke, LI Huanhuan, Dase , Cirendajie , CHEN Lihong, TANG Honggang. Ultrasound-assisted enzymolytic extraction of chlorohemin from yak blood powder: response surface optimization and quality characterization[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1357-1367.
自变量 Independent variables | 不同水平(编码)的设定值Setting values for different levels (codes) | ||
---|---|---|---|
低 Low(-1) | 中 Medium(0) | 高 High(1) | |
(A)超声波辅助酶解时间Ultrasound-assisted enzymolytic time/h | 3.5 | 4 | 4.5 |
(B)酶/底物浓度Enzyme/substrate concentration/(U·mg-1) | 11.25 | 15 | 18.75 |
(C)超声比功率Ultrasound specific power/(W·L-1) | 800 | 1 000 | 1 200 |
表1 超声波辅助酶解提取氯化血红素的Box-Behnken响应面优化试验设计
Table 1 Box-Behnken experimental design of response surface optimization for ultrasound-assisted enzymolytic extraction of chlorohemin from yak blood powder
自变量 Independent variables | 不同水平(编码)的设定值Setting values for different levels (codes) | ||
---|---|---|---|
低 Low(-1) | 中 Medium(0) | 高 High(1) | |
(A)超声波辅助酶解时间Ultrasound-assisted enzymolytic time/h | 3.5 | 4 | 4.5 |
(B)酶/底物浓度Enzyme/substrate concentration/(U·mg-1) | 11.25 | 15 | 18.75 |
(C)超声比功率Ultrasound specific power/(W·L-1) | 800 | 1 000 | 1 200 |
图1 超声波辅助酶解时间对氯化血红素提取纯度的影响 不同小写字母代表差异显著(P<0.05)。下同。
Fig.1 Effect of ultrasound-assisted enzymolytic time on the purity of extracted chlorohemin Different letters indicate significant differences (P<0.05). The same as below.
序号 Number | 自变量组合 Combination of independent variables | 纯度Purity/% | ||
---|---|---|---|---|
响应值 Response value | 预测值 Predicted value | 相对偏差 Relative deviation | ||
1 | A0B1C-1 | 15.91±0.31 ab | 15.92 | -0.02 |
2 | A0B0C0 | 14.78±1.37 abc | 14.13 | 0.65 |
3 | A1B-1C0 | 8.22±0.11 ghi | 6.89 | 1.33 |
4 | A-1B-1C0 | 6.24±0.08 i | 5.78 | 0.46 |
5 | A1B0C1 | 8.79±1.22 fgh | 8.87 | -0.08 |
6 | A-1B1C0 | 9.82±0.72 efgh | 10.78 | -0.96 |
7 | A0B-1C1 | 10.69±0.54 def | 11.04 | -0.36 |
8 | A1B0C1 | 10.52±0.22 efg | 11.67 | -1.16 |
9 | A0B-1C-1 | 8.06±1.66 hi | 9.50 | -1.44 |
10 | A0B0C0 | 16.15±0.54 a | 14.13 | 2.02 |
11 | A1B1C0 | 9.91±0.86 efgh | 10.00 | -0.09 |
12 | A-1B0C-1 | 13.12±0.91 bcd | 12.33 | 0.78 |
13 | A0B1C1 | 13.79±2.35 abc | 12.73 | 1.06 |
14 | A-1B0C1 | 7.58±0.50 hi | 7.88 | -0.29 |
15 | A0B0C0 | 12.02±1.50 cde | 14.13 | -2.11 |
16 | A0B0C0 | 14.06±1.37 abc | 14.13 | -0.06 |
17 | A0B0C0 | 14.36±0.19 abc | 14.13 | 0.24 |
表2 响应面优化提取工艺的Box-Behnken设计矩阵、响应值和预测值
Table 2 Box-Behnken design matrix, response value, and prediction value of response surface optimization for extraction
序号 Number | 自变量组合 Combination of independent variables | 纯度Purity/% | ||
---|---|---|---|---|
响应值 Response value | 预测值 Predicted value | 相对偏差 Relative deviation | ||
1 | A0B1C-1 | 15.91±0.31 ab | 15.92 | -0.02 |
2 | A0B0C0 | 14.78±1.37 abc | 14.13 | 0.65 |
3 | A1B-1C0 | 8.22±0.11 ghi | 6.89 | 1.33 |
4 | A-1B-1C0 | 6.24±0.08 i | 5.78 | 0.46 |
5 | A1B0C1 | 8.79±1.22 fgh | 8.87 | -0.08 |
6 | A-1B1C0 | 9.82±0.72 efgh | 10.78 | -0.96 |
7 | A0B-1C1 | 10.69±0.54 def | 11.04 | -0.36 |
8 | A1B0C1 | 10.52±0.22 efg | 11.67 | -1.16 |
9 | A0B-1C-1 | 8.06±1.66 hi | 9.50 | -1.44 |
10 | A0B0C0 | 16.15±0.54 a | 14.13 | 2.02 |
11 | A1B1C0 | 9.91±0.86 efgh | 10.00 | -0.09 |
12 | A-1B0C-1 | 13.12±0.91 bcd | 12.33 | 0.78 |
13 | A0B1C1 | 13.79±2.35 abc | 12.73 | 1.06 |
14 | A-1B0C1 | 7.58±0.50 hi | 7.88 | -0.29 |
15 | A0B0C0 | 12.02±1.50 cde | 14.13 | -2.11 |
16 | A0B0C0 | 14.06±1.37 abc | 14.13 | -0.06 |
17 | A0B0C0 | 14.36±0.19 abc | 14.13 | 0.24 |
项目 Item | 平方和 Sum of squares | 自由度 Freedom | 均方值 Mean square value | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 129.20 | 4 | 32.30 | 15.35 | <0.000 1 |
残差Residual | 25.26 | 12 | 2.10 | — | — |
失拟项Lack of fit | 16.34 | 8 | 2.04 | 0.916 1 | 0.577 5 |
误差Pure error | 8.92 | 4 | 2.23 | — | — |
总和Cor total | 154.45 | 16 | — | — | — |
R2=0.836 5 | 修正Corrective R2=0.782 0 | — | — | — |
表3 拟合的二阶多项式模型的方差分析
Table 3 Analysis of variance for the fitted quadratic polynomial model
项目 Item | 平方和 Sum of squares | 自由度 Freedom | 均方值 Mean square value | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 129.20 | 4 | 32.30 | 15.35 | <0.000 1 |
残差Residual | 25.26 | 12 | 2.10 | — | — |
失拟项Lack of fit | 16.34 | 8 | 2.04 | 0.916 1 | 0.577 5 |
误差Pure error | 8.92 | 4 | 2.23 | — | — |
总和Cor total | 154.45 | 16 | — | — | — |
R2=0.836 5 | 修正Corrective R2=0.782 0 | — | — | — |
项目 Item | 系统系数 System coefficient | 平方和 Sum of squares | 自由度 Freedom | 均方值 Mean square value | F值 F value | P值 P value |
---|---|---|---|---|---|---|
B | 2.03 | 32.87 | 1 | 32.87 | 15.62 | 0.001 9 |
AC | 1.82 | 13.18 | 1 | 13.18 | 6.62 | 0.027 8 |
A2 | -3.94 | 65.44 | 1 | 65.44 | 31.09 | <0.000 1 |
B2 | -1.83 | 14.08 | 1 | 14.08 | 6.69 | 0.023 8 |
表4 拟合的二阶多项式模型的多元回归分析
Table 4 Analysis of multiple regression for the fitted quadratic polynomial model
项目 Item | 系统系数 System coefficient | 平方和 Sum of squares | 自由度 Freedom | 均方值 Mean square value | F值 F value | P值 P value |
---|---|---|---|---|---|---|
B | 2.03 | 32.87 | 1 | 32.87 | 15.62 | 0.001 9 |
AC | 1.82 | 13.18 | 1 | 13.18 | 6.62 | 0.027 8 |
A2 | -3.94 | 65.44 | 1 | 65.44 | 31.09 | <0.000 1 |
B2 | -1.83 | 14.08 | 1 | 14.08 | 6.69 | 0.023 8 |
图4 超声波辅助酶解时间、酶/底物浓度和超声比功率交互影响氯化血红素提取纯度的3D响应面图(A、C和E)与等高线图(B、D和F) A和B,超声波辅助酶解时间与酶/底物浓度;C和D,超声波辅助酶解时间和超声比功率;E和F,酶/底物浓度和超声比功率。
Fig.4 3D response surface diagrams (A, C and E) and contour diagrams (B, D and F) of ultrasound-assisted enzymolytic time, enzyme/substrate concentration, and ultrasound specific power A and B, ultrasound-assisted enzymolytic time and enzyme/substrate concentration; C and D, ultrasound-assisted enzymolytic time and ultrasound specific power; E and F, enzyme/substrate concentration and ultrasound specific power.
条件 Conditions | 超声辅助酶解时间 Ultrasound-assisted enzymolytic time/h | 酶/底物浓度 Enzyme/substrate concentration/(U·mg-1) | 超声比功率 Ultrasound specific power/(W·L-1) | 预测纯度 Predicted purity/% |
---|---|---|---|---|
最佳条件Optimized conditions | 3.88 | 17.08 | 800.00 | 12.43 |
修正条件Modified conditions | 4.00 | 17.00 | 800.00 | 12.38 |
表5 最佳超声波辅助酶解条件下给出的提取纯度预测值
Table 5 Predicted value of the purity of extracted chlorohemin given under optimal ultrasound-assisted enzymatic conditions
条件 Conditions | 超声辅助酶解时间 Ultrasound-assisted enzymolytic time/h | 酶/底物浓度 Enzyme/substrate concentration/(U·mg-1) | 超声比功率 Ultrasound specific power/(W·L-1) | 预测纯度 Predicted purity/% |
---|---|---|---|---|
最佳条件Optimized conditions | 3.88 | 17.08 | 800.00 | 12.43 |
修正条件Modified conditions | 4.00 | 17.00 | 800.00 | 12.38 |
理化指标 Physicochemical indexes | 牦牛血粉 Yak blood powder | 普通酶解 Enzymolysis | 超声波辅助酶解 Ultrasound-assisted enzymolysis | 氯化血红素标准品 Standard substance of chlorohemin | |
---|---|---|---|---|---|
纯度Purity/% | 3.54±0.03 d | 7.21±0.02 c | 14.89±0.13 b | 95.50±0.80 a | |
得率Yield/% | — | 27.61±0.11 b | 63.30±1.32 a | — | |
粉体色度Powder chromaticity | L* | 43.29±1.46 a | 42.72±0.93 a | 34.96±0.23 c | 39.74±0.51 b |
a* | 5.79±0.79 a | 3.51±0.17 b | -0.54±0.13 c | 0.04±0.03 c | |
b* | 4.38±1.09 a | 3.32±0.52 a | -0.72±0.13 b | -2.40±0.04 c | |
溶液色度Solution chromaticity | L* | 43.48±1.99 a | 34.03±0.44 b | 33.10±0.40 b | 30.52±0.06 c |
a* | 17.17±0.30 a | 11.12±1.31 b | 7.55±0.98 c | 0.15±0.03 d | |
b* | 14.84±0.48 a | 2.20±0.63 b | 0.93±0.68 c | -1.08±0.05 d | |
红外光谱特征性官能团 | — | 700~720 cm-1: Cl-弯曲振动bending vibration | |||
Characteristic functional groups | 1 500~-1 700 cm-1:—C=O伸缩振动stretching vibration | ||||
in FT-IR spectrum | 2 360 & 2 900 cm-1:—C—H弯曲振动bending vibration | ||||
3 200~3500 cm-1:—O—H伸缩振动stretching vibration |
表6 响应面优化提取的氯化血红素的理化性质
Table 6 Physicochemical properties of chlorohemin extracted with response surface optimization
理化指标 Physicochemical indexes | 牦牛血粉 Yak blood powder | 普通酶解 Enzymolysis | 超声波辅助酶解 Ultrasound-assisted enzymolysis | 氯化血红素标准品 Standard substance of chlorohemin | |
---|---|---|---|---|---|
纯度Purity/% | 3.54±0.03 d | 7.21±0.02 c | 14.89±0.13 b | 95.50±0.80 a | |
得率Yield/% | — | 27.61±0.11 b | 63.30±1.32 a | — | |
粉体色度Powder chromaticity | L* | 43.29±1.46 a | 42.72±0.93 a | 34.96±0.23 c | 39.74±0.51 b |
a* | 5.79±0.79 a | 3.51±0.17 b | -0.54±0.13 c | 0.04±0.03 c | |
b* | 4.38±1.09 a | 3.32±0.52 a | -0.72±0.13 b | -2.40±0.04 c | |
溶液色度Solution chromaticity | L* | 43.48±1.99 a | 34.03±0.44 b | 33.10±0.40 b | 30.52±0.06 c |
a* | 17.17±0.30 a | 11.12±1.31 b | 7.55±0.98 c | 0.15±0.03 d | |
b* | 14.84±0.48 a | 2.20±0.63 b | 0.93±0.68 c | -1.08±0.05 d | |
红外光谱特征性官能团 | — | 700~720 cm-1: Cl-弯曲振动bending vibration | |||
Characteristic functional groups | 1 500~-1 700 cm-1:—C=O伸缩振动stretching vibration | ||||
in FT-IR spectrum | 2 360 & 2 900 cm-1:—C—H弯曲振动bending vibration | ||||
3 200~3500 cm-1:—O—H伸缩振动stretching vibration |
[1] | 杨柏高, 郝海生, 杜卫华, 等. 牦牛高原适应研究进展[J]. 畜牧兽医学报, 2023, 54(1): 12-23. |
YANG B G, HAO H S, DU W H, et al. Advances in research on plateau adaptation of yak[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 12-23. (in Chinese with English abstract) | |
[2] | 闫忠心, 靳义超, 李升升. 青藏高原牧区风干牦牛肉的营养品质分析[J]. 青海畜牧兽医杂志, 2017, 47(1): 20-23, 8. |
YAN Z X, JIN Y C LI S S. Analysis of nutritional quality of dry yak meat in Qinghai-Tibet Plateau[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2017, 47(1): 20-23, 8. (in Chinese with English abstract) | |
[3] | DIAO N C, GONG Q L, LI J M, et al. Prevalence of bovine viral diarrhea virus (BVDV) in yaks between 1987 and 2019 in mainland China: a systematic review and meta-analysis[J]. Microbial Pathogenesis, 2020, 144: 104185. |
[4] | ZHANG J, LI X Q, ZHAO K, et al. In vitro digestion and fermentation combined with microbiomics and metabolomics reveal the mechanism of superfine yak bone powder regulating lipid metabolism by altering human gut microbiota[J]. Food Chemistry, 2023, 410: 135441. |
[5] | HUANG Q, DONG K, WANG Q, et al. Changes in volatile flavor of yak meat during oxidation based on multi-omics[J]. Food Chemistry, 2022, 371: 131103. |
[6] | MEDHI D, SANTRA A, PAUL V, et al. Effect of plane of nutrition on blood biochemical parameters and attainment of sexual maturity in growing yaks[J]. The Indian Journal of Animal Sciences, 2018, 88(4): 470-473. |
[7] | 高子涵, 张卫兵, 梁琪, 等. 牦牛血粉制备氯化血红素工艺优化研究[J]. 食品工业科技, 2013, 34(19): 248-251. |
GAO Z H, ZHANG W B, LIANG Q, et al. Optimization of technology for hemin from Bosgruniens blood powder[J]. Science and Technology of Food Industry, 2013, 34(19): 248-251. (in Chinese with English abstract) | |
[8] | 王丽媛, 高艳蕾, 张丽, 等. 畜禽副产物的加工利用现状及研究展望[J]. 食品科技, 2022, 47(6): 174-183. |
WANG L Y, GAO Y L, ZHANG L, et al. Processing and utilization status and research prospect of livestock and poultry by-products[J]. Food Science and Technology, 2022, 47(6): 174-183. (in Chinese with English abstract) | |
[9] | 胡睿琦, 王建敏, 王楠, 等. 冰醋酸法提取猪血红素的研究[J]. 安徽农业科学, 2014, 42(16): 5211-5213. |
HU R Q, WANG J M, WANG N, et al. Study on the extraction of hemoglobin from porcine blood by acetic acid method[J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5211-5213. (in Chinese with English abstract) | |
[10] | 沈亮, 徐晓燕, 赵斌斌, 等. 改良酸性丙酮法提取鸭血血红素的研究[J]. 中国药学杂志, 2014, 49(8): 664-668. |
SHEN L, XU X Y, ZHAO B B, et al. Preparation of heme from duck blood by a new acidified acetone extraction method[J]. Chinese Pharmaceutical Journal, 2014, 49(8): 664-668. (in Chinese with English abstract) | |
[11] | 代文婷, 陶永霞, 杨海燕, 等. 超声波结合CMC-Na对马血中血红素提取工艺效果影响[J]. 食品工业科技, 2014, 35(13): 257-261. |
DAI W T, TAO Y X, YANG H Y, et al. The impact of ultrasound combined with CMC-Na on the extraction of heme from horse blood[J]. Science and Technology of Food Industry, 2014, 35(13): 257-261. (in Chinese with English abstract) | |
[12] | 贾志春, 张珍, 张盛贵, 等. 木瓜蛋白酶酶解牦牛血红蛋白制备氯化血红素关键工艺研究[J]. 食品工业科技, 2016, 37(3): 206-210, 215. |
JIA Z C, ZHANG Z, ZHANG S G, et al. Study on the preparation technology of hemin from enzymolysis yak blood by papain[J]. Science and Technology of Food Industry, 2016, 37(3): 206-210, 215. (in Chinese with English abstract) | |
[13] | 韩晴, 王维婷, 王守经, 等. 羊血亚铁血红素的酶法制备及抗氧化活性研究[J]. 食品科技, 2023, 48(3): 147-154. |
HAN Q, WANG W T, WANG S J, et al. Enzymatic preparation and antioxidant activity of ferroheme from sheep blood[J]. Food Science and Technology, 2023, 48(3): 147-154. (in Chinese with English abstract) | |
[14] | TAVANANDI H A, RAGHAVARAO K S M S. Ultrasound-assisted enzymatic extraction of natural food colorant C-Phycocyanin from dry biomass of Arthrospira platensis[J]. LWT, 2020, 118: 108802. |
[15] | 于娇, 陈胜军, 胡晓, 等. 超声波辅助提取坛紫菜蛋白条件优化及其基础特性研究[J]. 食品与发酵工业, 2019, 45(8): 142-148. |
YU J, CHEN S J, HU X, et al. Extraction and characterization of protein from Porphyra haitanensis by optimized ultrasound-assisted extraction[J]. Food and Fermentation Industries, 2019, 45(8): 142-148. (in Chinese with English abstract) | |
[16] | 闫忠心. 超声辅助提取冷冻牦牛血中血红素的工艺优化[J]. 青海大学学报, 2018, 36(5): 1-6. |
YAN Z X. Technology optimization of ultrasonic-assisted heme extraction from frozen yak blood[J]. Journal of Qinghai University, 2018, 36(5): 1-6. (in Chinese with English abstract) | |
[17] | 张晋, 谭芦兰, 陈伊凡, 等. 可溶性膳食纤维强化重组蛋片的响应面优化制备和品质评价[J]. 中国食品学报, 2020, 20(12): 155-166. |
ZHANG J, TAN L L, CHEN Y F, et al. Response surface optimization and quality evaluation of soluble dietary fiber-fortified restructuring egg white curd[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 155-166. (in Chinese with English abstract) | |
[18] | ZIMET P, MOMBRÚ Á W, FACCIO R, et al. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef[J]. LWT, 2018, 91: 107-116. |
[19] | YING Y B, XIANG Y C, LIU J L, et al. Optimization of ultrasonic-assisted freezing of Penaeus chinensis by response surface methodology[J]. Food Safety and Quality, 2021, 5(2):143-151. |
[20] | ZHANG J, LI H H, CHEN Y F, et al. Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion[J]. Journal of Zhejiang University Science B, 2020, 21(8): 611-627. |
[21] | MA Y Q, SHAN A S, WANG R H, et al. Characterization of egg white powder gel structure and its relationship with gel properties influenced by pretreatment with dry heat[J]. Food Hydrocolloids, 2021, 110: 106149. |
[22] | 刘振荣, 王君, 张向东, 等. 超声波法提取氯化血红素的初步研究[J]. 辽宁大学学报(自然科学版), 2003, 30(4): 373-377. |
LIU Z R, WANG J, ZHANG X D, et al. Primary investigation on the extraction of hemin using an ultrasonic method[J]. Journal of Liaoning University(Natural Science Edition), 2003, 30(4): 373-377. (in Chinese with English abstract) | |
[23] | 吴文锦, 汪兰, 孙静, 等. 鸡血血红蛋白酶法提取血红素工艺优化[J]. 食品研究与开发, 2021, 42(9): 90-96. |
WU W J, WANG L, SUN J, et al. Optimization of enzymatic extraction of heme from hemoglobin in chicken blood[J]. Food Research and Development, 2021, 42(9): 90-96. (in Chinese with English abstract) | |
[24] | LIN B B, WANG S S, ZHOU A Q, et al. Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide[J]. Ultrasonics Sonochemistry, 2023, 98: 106507. |
[25] | KUMCUOGLU S, YILMAZ T, TAVMAN S. Ultrasound assisted extraction of lycopene from tomato processing wastes[J]. Journal of Food Science and Technology, 2014, 51(12): 4102-4107. |
[26] | HE S D, ZHANG Y, SUN H J, et al. Antioxidative peptides from proteolytic hydrolysates of false abalone (Volutharpa ampullacea perryi): characterization, identification, and molecular docking[J]. Marine Drugs, 2019, 17(2): 116. |
[27] | 敬思群, 张俊艳, 王德萍. 酶解-超声辅助联用提取塔尔米多糖[J]. 中国粮油学报, 2019, 34(5): 121-127. |
JING S Q, ZHANG J Y, WANG D P. Combined process of enzyme hydrolysis and ultrasound-assisted for extracting polysaccharides from Ta-er-mi[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5): 121-127. (in Chinese with English abstract) | |
[28] | 杨志, 李文义, 高云涛, 等. 响应面法优化针叶樱桃总黄酮的提取工艺及其抗氧化活性研究[J]. 浙江农业学报, 2020, 32(10): 1866-1872. |
YANG Z, LI W Y, GAO Y T, et al. Optimization of extraction process of total flavonoids from Acerola cherry by response surface methodology and their antioxidant activities[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1866-1872. (in Chinese with English abstract) | |
[29] | JIN Y, WANG C Y, HU W H, et al. An optimization of ultra-sonication-assisted extraction from flowers of Apocynum venetum in targeting to amount of free amino acids determined by UPLC-MS/MS[J]. Food Quality and Safety, 2019, 3(1): 52-60. |
[30] | 马艳弘, 孟勇, 崔晋, 等. 牛蒡多酚超声辅助酶法提取工艺及抗氧化活性[J]. 食品与生物技术学报, 2020, 39(1): 38-45. |
MA Y H, MENG Y, CUI J, et al. Optimization of ultrasonic-assisted enzyme extraction of polyphenols from burdock and its antioxidant activity evaluation[J]. Journal of Food Science and Biotechnology, 2020, 39(1): 38-45. (in Chinese with English abstract) | |
[31] | GUO X G, JIANG X L, ZHU Y M, et al. Unified description on principles of Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy[J]. Infrared Physics & Technology, 2019, 101: 105-109. |
[1] | 王涛;夏其乐;陆胜民;*. 超声波提取杨梅疏果核仁中苦杏仁苷工艺研究[J]. , 2014, 26(3): 0-779785. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||