浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 745-753.DOI: 10.3969/j.issn.1004-1524.20240262
裴大妹(), 赵洪平, 王龙, 李华欣, 赵志, 肖麓*(
)
收稿日期:
2024-03-20
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
裴大妹(2000—),女,甘肃敦煌人,硕士研究生,研究方向为春油菜分子育种。E-mail:pdm2022@163.com
通讯作者:
*肖麓,E-mail:xlu2005@aliyun.com
基金资助:
PEI Damei(), ZHAO Hongping, WANG Long, LI Huaxin, ZHAO Zhi, XIAO Lu*(
)
Received:
2024-03-20
Online:
2025-04-25
Published:
2025-05-09
摘要: 分枝角度是决定油菜株型的重要性状之一,与油菜产量密切相关。为揭示白菜型油菜(Brassica rapa L.)分枝角度的遗传规律,本研究选用青海大黄为母本,浩油11和No.952为父本分别配置杂交组合,采用主基因+多基因混合遗传模型分析的方法对2个组合各世代(P1、P2、F1、F2)单株的顶端连续3个分枝的夹角进行遗传分析。结果表明:西宁组合Ⅰ分枝角度的最适模型为2MG-EAD模型(2对完全显性主基因模型),主基因遗传率为84.61%,组合Ⅱ分枝角度的最适模型为2MG-A(2对加性主基因模型),主基因遗传率为80.71%;云南组合Ⅰ的最适模型为2MG-EA(2对等加性主基因模型),组合Ⅱ的最适模型为2MG-EAD(2对完全显性主基因模型),主基因遗传率均为86.05%。以上结果表明,白菜型油菜分枝角度明显受2对主基因遗传因素控制,且主基因间具有加性效应或显性效应;2个组合具有较高的主基因遗传力,说明油菜在分枝角度调控过程中,受多基因与环境因素影响较小,所以应在早期群体里进行选择。同时,这些结果可以为理想株型的构建和后续分枝角度数量性状基因座(QTL)定位和育种提供理论指导。
中图分类号:
裴大妹, 赵洪平, 王龙, 李华欣, 赵志, 肖麓. 白菜型油菜分枝角度主基因+多基因混合遗传模型分析[J]. 浙江农业学报, 2025, 37(4): 745-753.
PEI Damei, ZHAO Hongping, WANG Long, LI Huaxin, ZHAO Zhi, XIAO Lu. Mixed genetic model analysis of major gene + polygene of branch angle in Brassica rapa L.[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 745-753.
环境 Environ- ment | 世代 Gene- ration | Ⅰ组合Combination Ⅰ | Ⅱ组合Combination Ⅱ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单株数 No. of plants | 分枝角度Branch angle | 单株数 No. of single plant | 分枝角度Branch angle | ||||||||||
最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | 最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | ||||
西宁 | P1 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 |
Xining | P2 | 20 | 54.54 | 21.53 | 33.37 | 7.22 | 21.64 | 10 | 36.76 | 23.90 | 30.10 | 5.58 | 18.54 |
F1 | 17 | 41.54 | 24.15 | 30.34 | 4.72 | 15.56 | 17 | 37.54 | 21.25 | 29.19 | 4.62 | 15.83 | |
F2 | 197 | 51.25 | 10.03 | 30.37 | 7.37 | 24.27 | 190 | 43.78 | 9.07 | 26.86 | 6.58 | 24.50 | |
云南 | P1 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 |
Yunnan | P2 | 20 | 48.70 | 25.31 | 33.94 | 9.06 | 26.69 | 20 | 50.44 | 20.21 | 38.91 | 8.14 | 20.92 |
F1 | 17 | 44.74 | 21.08 | 31.97 | 4.57 | 14.29 | 17 | 47.23 | 28.80 | 34.39 | 5.20 | 15.12 | |
F2 | 185 | 65.36 | 16.20 | 35.11 | 9.29 | 26.46 | 188 | 57.18 | 10.01 | 32.82 | 9.61 | 29.28 |
表1 大黄×浩油11和大黄×No.952 4个世代分枝角度的表型数据统计
Table 1 Phenotype data statistics of branch angle in four generations from Dahuang×Haoyou 11 and Dahuang×No.952
环境 Environ- ment | 世代 Gene- ration | Ⅰ组合Combination Ⅰ | Ⅱ组合Combination Ⅱ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单株数 No. of plants | 分枝角度Branch angle | 单株数 No. of single plant | 分枝角度Branch angle | ||||||||||
最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | 最大值 Maximum/ (°) | 最小值 Minimun/ (°) | 平均数 Mean/ (°) | 标准差 SD | 变异系数 CV/% | ||||
西宁 | P1 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 | 20 | 25.15 | 15.23 | 23.05 | 2.97 | 12.89 |
Xining | P2 | 20 | 54.54 | 21.53 | 33.37 | 7.22 | 21.64 | 10 | 36.76 | 23.90 | 30.10 | 5.58 | 18.54 |
F1 | 17 | 41.54 | 24.15 | 30.34 | 4.72 | 15.56 | 17 | 37.54 | 21.25 | 29.19 | 4.62 | 15.83 | |
F2 | 197 | 51.25 | 10.03 | 30.37 | 7.37 | 24.27 | 190 | 43.78 | 9.07 | 26.86 | 6.58 | 24.50 | |
云南 | P1 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 | 20 | 29.71 | 17.42 | 22.44 | 3.79 | 16.89 |
Yunnan | P2 | 20 | 48.70 | 25.31 | 33.94 | 9.06 | 26.69 | 20 | 50.44 | 20.21 | 38.91 | 8.14 | 20.92 |
F1 | 17 | 44.74 | 21.08 | 31.97 | 4.57 | 14.29 | 17 | 47.23 | 28.80 | 34.39 | 5.20 | 15.12 | |
F2 | 185 | 65.36 | 16.20 | 35.11 | 9.29 | 26.46 | 188 | 57.18 | 10.01 | 32.82 | 9.61 | 29.28 |
环境 Environment | 组合Ⅰ Combination Ⅰ | 组合Ⅱ Combination Ⅱ | ||||
---|---|---|---|---|---|---|
模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | 模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | |
西宁Xining | 1MG-AD | 1 654.77 | -821.39 | 1MG-AD | 1 441.82 | -714.91 |
1MG-A | 1 653.22 | -821.61 | 1MG-A | 1 440.13 | -715.06 | |
1MG-EAD | 1 653.30 | -821.65 | 1MG-EAD | 1 439.97 | -714.98 | |
1MG - NCD | 1 652.41 | -821.20 | 1MG-NCD | 1 440.02 | -715.01 | |
2MG-ADI | 1 672.71 | -825.35 | 2MG-ADI | 1 456.28 | -717.14 | |
2MG-AD | 1 668.77 | -827.39 | 2MG-AD | 1 451.66 | -718.83 | |
2MG-A | 1 679.56 | -834.78 | 2MG - A | 1 431.33 | -710.67 | |
2MG-EA | 1 652.47 | -822.24 | 2MG - EA | 1 431.86 | -711.93 | |
2MG-CD | 1 694.88 | -842.44 | 2MG-CD | 1 448.50 | -719.25 | |
2MG - EAD | 1 651.54 | -821.77 | 2MG-EAD | 1 440.52 | -716.26 | |
云南Yunnan | 1MG-AD | 1 088.24 | -538.12 | 1MG-AD | 1 090.69 | -539.34 |
1MG-A | 1 086.77 | -538.39 | 1MG-A | 1 088.70 | -539.35 | |
1MG-EAD | 1 086.63 | -538.32 | 1MG-EAD | 1 089.08 | -539.54 | |
1MG-NCD | 1 087.79 | -538.90 | 1MG-NCD | 1 090.24 | -540.12 | |
2MG-ADI | 1 106.72 | -542.36 | 2MG-ADI | 1 108.64 | -543.32 | |
2MG-AD | 1 100.32 | -543.16 | 2MG-AD | 1 103.81 | -544.90 | |
2MG-A | 1 109.01 | -549.51 | 2MG-A | 1 110.38 | -550.19 | |
2MG - EA | 1 083.34 | -537.67 | 2MG - EA | 1 085.71 | -538.85 | |
2MG-CD | 1 112.02 | -551.01 | 2MG-CD | 1 135.54 | -562.77 | |
2MG - EAD | 1 084.36 | -538.18 | 2MG - EAD | 1 085.50 | -538.75 |
表2 各组合的遗传分析备选模型
Table 2 Alternative models for genetic analysis of each combination
环境 Environment | 组合Ⅰ Combination Ⅰ | 组合Ⅱ Combination Ⅱ | ||||
---|---|---|---|---|---|---|
模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | 模型含义 Implication of model | AIC值 AIC value | 极大似然函数值 Maximum likelihood function value | |
西宁Xining | 1MG-AD | 1 654.77 | -821.39 | 1MG-AD | 1 441.82 | -714.91 |
1MG-A | 1 653.22 | -821.61 | 1MG-A | 1 440.13 | -715.06 | |
1MG-EAD | 1 653.30 | -821.65 | 1MG-EAD | 1 439.97 | -714.98 | |
1MG - NCD | 1 652.41 | -821.20 | 1MG-NCD | 1 440.02 | -715.01 | |
2MG-ADI | 1 672.71 | -825.35 | 2MG-ADI | 1 456.28 | -717.14 | |
2MG-AD | 1 668.77 | -827.39 | 2MG-AD | 1 451.66 | -718.83 | |
2MG-A | 1 679.56 | -834.78 | 2MG - A | 1 431.33 | -710.67 | |
2MG-EA | 1 652.47 | -822.24 | 2MG - EA | 1 431.86 | -711.93 | |
2MG-CD | 1 694.88 | -842.44 | 2MG-CD | 1 448.50 | -719.25 | |
2MG - EAD | 1 651.54 | -821.77 | 2MG-EAD | 1 440.52 | -716.26 | |
云南Yunnan | 1MG-AD | 1 088.24 | -538.12 | 1MG-AD | 1 090.69 | -539.34 |
1MG-A | 1 086.77 | -538.39 | 1MG-A | 1 088.70 | -539.35 | |
1MG-EAD | 1 086.63 | -538.32 | 1MG-EAD | 1 089.08 | -539.54 | |
1MG-NCD | 1 087.79 | -538.90 | 1MG-NCD | 1 090.24 | -540.12 | |
2MG-ADI | 1 106.72 | -542.36 | 2MG-ADI | 1 108.64 | -543.32 | |
2MG-AD | 1 100.32 | -543.16 | 2MG-AD | 1 103.81 | -544.90 | |
2MG-A | 1 109.01 | -549.51 | 2MG-A | 1 110.38 | -550.19 | |
2MG - EA | 1 083.34 | -537.67 | 2MG - EA | 1 085.71 | -538.85 | |
2MG-CD | 1 112.02 | -551.01 | 2MG-CD | 1 135.54 | -562.77 | |
2MG - EAD | 1 084.36 | -538.18 | 2MG - EAD | 1 085.50 | -538.75 |
环境 Environment | 组合 Combination | 模型 Model | 世代 Generation | nW2 | Dn | |||
---|---|---|---|---|---|---|---|---|
西宁Xining | Ⅰ | 2MG-EAD | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) |
P2 | 0.289(0.591) | 0.833(0.361) | 2.465(0.116) | 0.023(0.384) | 0.190(0.418) | |||
F1 | 0.128(0.720) | 0.117(0.732) | 0.000 3(0.986) | 0.005(0.735) | 0.167(0.637) | |||
F2 | 0.002(0.966) | 0.001(0.981) | 0.005(0.947) | 0.002(0.937) | 0.042(0.885) | |||
Ⅱ | 2MG-A | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) | |
P2 | 0.004(0.949) | 0.001(0.972) | 0.011(0.916) | 0.004(0.784) | 0.284(0.726) | |||
F1 | 0.002(0.961) | 0.118(0.732) | 2.430(0.119) | 0.005(0.771) | 0.153(0.850) | |||
F2 | 0.001(0.971) | 0.001(0.971) | 0(0.995) | 0(1.000) | 0.025(1.000) | |||
云南Yunnan | Ⅰ | 2MG-EA | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.003(0.839) | 0.176(0.866) |
P2 | 0.064(0.801) | 0.049(0.825) | 0.008(0.928) | 0.008(0.666) | 0.281(0.470) | |||
F1 | 0.002(0.961) | 0.043(0.836) | 0.413(0.520) | 0.002(0.899) | 0.116(0.965) | |||
F2 | 0(0.998) | 0(0.994) | 0.001(0.980) | 0.001(0.984) | 0.048(0.943) | |||
Ⅱ | 2MG-EAD | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.004(0.839) | 0.176(0.865) | |
P2 | 0.228(0.633) | 0.062(0.804) | 0.732(0.392) | 0.022(0.393) | 0.296(0.407) | |||
F1 | 0.022(0.882) | 0.007(0.932) | 0.056(0.813) | 0.005(0.759) | 0.195(0.516) | |||
F2 | 0(0.993) | 0(0.998) | 0.002(0.965) | 0(0.985) | 0.047(0.952) |
表3 最适遗传模型的适合性检验
Table 3 Goodness-of-fit test of the optimal genetic model
环境 Environment | 组合 Combination | 模型 Model | 世代 Generation | nW2 | Dn | |||
---|---|---|---|---|---|---|---|---|
西宁Xining | Ⅰ | 2MG-EAD | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) |
P2 | 0.289(0.591) | 0.833(0.361) | 2.465(0.116) | 0.023(0.384) | 0.190(0.418) | |||
F1 | 0.128(0.720) | 0.117(0.732) | 0.000 3(0.986) | 0.005(0.735) | 0.167(0.637) | |||
F2 | 0.002(0.966) | 0.001(0.981) | 0.005(0.947) | 0.002(0.937) | 0.042(0.885) | |||
Ⅱ | 2MG-A | P1 | 0.021(0.884) | 0.041(0.840) | 0.060(0.807) | 0.002(0.933) | 0.119(0.909) | |
P2 | 0.004(0.949) | 0.001(0.972) | 0.011(0.916) | 0.004(0.784) | 0.284(0.726) | |||
F1 | 0.002(0.961) | 0.118(0.732) | 2.430(0.119) | 0.005(0.771) | 0.153(0.850) | |||
F2 | 0.001(0.971) | 0.001(0.971) | 0(0.995) | 0(1.000) | 0.025(1.000) | |||
云南Yunnan | Ⅰ | 2MG-EA | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.003(0.839) | 0.176(0.866) |
P2 | 0.064(0.801) | 0.049(0.825) | 0.008(0.928) | 0.008(0.666) | 0.281(0.470) | |||
F1 | 0.002(0.961) | 0.043(0.836) | 0.413(0.520) | 0.002(0.899) | 0.116(0.965) | |||
F2 | 0(0.998) | 0(0.994) | 0.001(0.980) | 0.001(0.984) | 0.048(0.943) | |||
Ⅱ | 2MG-EAD | P1 | 0.040(0.842) | 0.011(0.917) | 0.126(0.723) | 0.004(0.839) | 0.176(0.865) | |
P2 | 0.228(0.633) | 0.062(0.804) | 0.732(0.392) | 0.022(0.393) | 0.296(0.407) | |||
F1 | 0.022(0.882) | 0.007(0.932) | 0.056(0.813) | 0.005(0.759) | 0.195(0.516) | |||
F2 | 0(0.993) | 0(0.998) | 0.002(0.965) | 0(0.985) | 0.047(0.952) |
环境 Environment | 组合 Combination | 一阶遗传参数1st order genetic parameter/% | ||
---|---|---|---|---|
群体均方m | 第1对主基因的加性效应da | 第2对主基因的加性效应db | ||
西宁Xining | Ⅰ(2MG-EAD) | 28.68 | -1.10 | 0 |
Ⅱ(2MG-A) | 27.50 | -5.65 | 2.54 | |
云南Yunnan | Ⅰ(2MG-EA) | 30.82 | -2.89 | 0 |
Ⅱ(2MG-EAD) | 32.69 | -4.12 | 0 |
表4 最适遗传模型的一阶遗传参数估计
Table 4 Estimation of the 1st genetic parameter for the optimal genetic model
环境 Environment | 组合 Combination | 一阶遗传参数1st order genetic parameter/% | ||
---|---|---|---|---|
群体均方m | 第1对主基因的加性效应da | 第2对主基因的加性效应db | ||
西宁Xining | Ⅰ(2MG-EAD) | 28.68 | -1.10 | 0 |
Ⅱ(2MG-A) | 27.50 | -5.65 | 2.54 | |
云南Yunnan | Ⅰ(2MG-EA) | 30.82 | -2.89 | 0 |
Ⅱ(2MG-EAD) | 32.69 | -4.12 | 0 |
环境 Environment | 组合 Combination | 二阶遗传参数 2nd order genetic parameter/% | |
---|---|---|---|
主基因方差 | 主基因遗传率 | ||
西宁Xining | Ⅰ(2MG-EAD) | 46.00 | 84.61 |
Ⅱ(2MG-A) | 35.01 | 80.71 | |
云南Yunnan | Ⅰ(2MG-EA) | 79.52 | 86.05 |
Ⅱ(2MG-EAD) | 79.52 | 86.05 |
表5 最适遗传模型的二阶遗传参数估计
Table 5 Estimation of 2nd genetic parameter for the optimal genetic model
环境 Environment | 组合 Combination | 二阶遗传参数 2nd order genetic parameter/% | |
---|---|---|---|
主基因方差 | 主基因遗传率 | ||
西宁Xining | Ⅰ(2MG-EAD) | 46.00 | 84.61 |
Ⅱ(2MG-A) | 35.01 | 80.71 | |
云南Yunnan | Ⅰ(2MG-EA) | 79.52 | 86.05 |
Ⅱ(2MG-EAD) | 79.52 | 86.05 |
[1] | 徐亮, 唐国永, 杜德志. 我国双低油菜多功能利用及青海省发展潜力分析[J]. 青海大学学报, 2019, 37(3): 41-48. |
XU L, TANG G Y, DU D Z. Multi-functional utilization of “double-low” rapeseed in China and development potential in Qinghai Province[J]. Journal of Qinghai University, 2019, 37(3): 41-48. (in Chinese with English abstract) | |
[2] | 赵洪平, 李延玲, 马茜茹, 等. 白菜型油菜产量相关性状的数量遗传分析[J]. 江苏农业科学, 2023, 51(2): 92-97. |
ZHAO H P, LI Y L, MA Q R, et al. Quantitative genetic analysis of yield-related traits in Brassic rapa[J]. Jiangsu Agricultural Sciences, 2023, 51(2): 92-97. (in Chinese with English abstract) | |
[3] | 王焕强. 青海省杂交油菜制种现状与潜力[J]. 中国种业, 2015(4): 1-3. |
WANG H Q. Current situation and potential of hybrid rapeseed production in Qinghai Province[J]. China Seed Industry, 2015(4): 1-3. (in Chinese) | |
[4] | 牛妍, 赵志刚, 余青兰, 等. 芥菜型油菜和白菜型油菜种间杂种遗传分析[J]. 植物遗传资源学报, 2013, 14(4): 715-722. |
NIU Y, ZHAO Z G, YU Q L, et al. Genetic analysis on interspecific hybrids progeny between Brassica juncea and Brassica rapa[J]. Journal of Plant Genetic Resources, 2013, 14(4): 715-722. (in Chinese with English abstract) | |
[5] | 马寿福, 刁治民, 吴保锋. 青海省油菜产业化现状及发展对策[J]. 安徽农业科学, 2006, 34(11): 2568-2571. |
MA S F, DIAO Z M, WU B F. Industrialization actuality and development countermeasure of rapeseed in Qinghai[J]. Journal of Anhui Agricultural Sciences, 2006, 34(11): 2568-2571. (in Chinese) | |
[6] | 夏胜前, 张毅, 涂金星. 油菜重要性状功能基因研究进展[J]. 中国油料作物学报, 2018, 40(5): 656-663. |
XIA S Q, ZHANG Y, TU J X. Research advance on functional genomics in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 656-663. (in Chinese with English abstract) | |
[7] | 李洪戈. 甘蓝型油菜分枝角度和茎秆倒伏性状的遗传基础解析[D]. 武汉: 华中农业大学, 2018. |
LI H G. Genetic basis analysis of branch angle and stem lodging traits in Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[8] | 张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位[D]. 重庆: 西南大学, 2013. |
ZHANG Q. Genetic analysis and QTL mapping of main plant type traits in Brassica napus[D]. Chongqing: Southwest University, 2013. (in Chinese with English abstract) | |
[9] | 汪文祥, 胡琼, 梅德圣, 等. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应[J]. 作物学报, 2016, 42(8): 1103-1111. |
WANG W X, HU Q, MEI D S, et al. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L[J]. Acta Agronomica Sinica, 2016, 42(8): 1103-1111. (in Chinese with English abstract) | |
[10] | 张淼. 甘蓝型油菜分枝角度QTL定位及候选基因分析[D]. 杨凌: 西北农林科技大学, 2022. |
ZHANG M. QTL mapping for brach angle and analysis of candidate genes in Brassica napus L.[D]. Yangling: Northwest A & F University, 2022. (in Chinese with English abstract) | |
[11] | 赵小珍, 赵卫国, 张春, 等. 甘蓝型油菜分枝角度QTL定位及候选基因分析[J]. 中国油料作物学报, 2022, 44(1): 25-34. |
ZHAO X Z, ZHAO W G, ZHANG C, et al. QTL mapping and candidate gene analysis of branch angle in Brassica napus L[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 25-34. (in Chinese with English abstract) | |
[12] | LIU J, WANG W X, MEI D S, et al. Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.)[J]. Frontiers in Plant Science, 2016, 7: 21. |
[13] | 江建华, 张武汉, 党小景, 等. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
JIANG J H, ZHANG W H, DANG X J, et al. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice(Oryza sativa L.)[J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. (in Chinese with English abstract) | |
[14] | 陈悦, 王同著, 郑跃婷, 等. 小麦分蘖性状分子遗传研究进展[J]. 麦类作物学报, 2022, 42(5): 564-571. |
CHEN Y, WANG T Z, ZHENG Y T, et al. Advances in molecular genetics of tillering characters in wheat[J]. Journal of Triticeae Crops, 2022, 42(5): 564-571. (in Chinese with English abstract) | |
[15] | 王聚辉, 程子祥, 修文雯, 等. 玉米茎叶夹角与根系入土角度相关性研究[J]. 华北农学报, 2015, 30(S1):173-178. |
WANG J H, CHENG Z X, XIU W W, et al. Study on the correlation between maize leaf angle and root penetration angle[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):173-178. (in Chinese with English abstract) | |
[16] | 马麒, 李吉莲, 徐守振, 等. 陆地棉果枝夹角性状的主基因+多基因混合遗传模型分析[J]. 生物技术通报, 2022, 38(10): 148-158. |
MA Q, LI J L, XU S Z, et al. Genetic analysis of FBA trait in upland cotton with major gene plus polygenes mixed genetic model[J]. Biotechnology Bulletin, 2022, 38(10): 148-158. (in Chinese with English abstract) | |
[17] | 盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 2005, 27(1): 130-136. |
GAI J Y. Segregation analysis of genetic system of quantitative traits in plants[J]. Hereditas(Beijing), 2005, 27(1): 130-136. (in Chinese with English abstract) | |
[18] | 章元明, 盖钧镒, 张孟臣. 利用P1 F1 P2和F2或F2∶3世代联合的数量性状分离分析[J]. 西南农业大学学报(自然科学版), 2000, 22(1):6-9. |
ZHANG Y M, GAI J Y, ZHANG M C. Jointly segregating analysis of P1 P2 F1 and F2 or F2∶3 families[J]. Journal of Southwest Agricultural University (Natural Science Edition), 2000, 22(1):6-9. (in Chinese with English abstract) | |
[19] | 王靖天, 张亚雯, 杜应雯, 等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
WANG J T, ZHANG Y W, DU Y W, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese with English abstract) | |
[20] | 高丽萍, 陈慧, 刘嘉诚, 等. 油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响[J]. 农业工程学报, 2023, 39(11): 87-97. |
GAO L P, CHEN H, LIU J C, et al. Effects of synchronous layered fertilization with machinery on the root architecture and lodging resistance of rape[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 87-97. (in Chinese with English abstract) | |
[21] | 张斯媚. 我国油菜生产现状及发展前景分析[J]. 农村经济与科技, 2016, 27(20): 35. |
ZHANG S M. Analysis of the current situation and development prospect of rapeseed production in China[J]. Rural Economy and Science-Technology, 2016, 27(20): 35. (in Chinese) | |
[22] | 陈莎莎. 长江流域油菜生产规模效益研究[D]. 武汉: 华中农业大学, 2017. |
CHEN S S. The research of rapeseed production scale profit in YangtzeRiver Basin[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[23] | 董凤. 油菜绿色高效高产栽培[J]. 云南农业, 2021(8): 77-78. |
DONG F. Rape green high-efficiency and high-yield cultivation[J]. Yunnan Agriculture, 2021(8): 77-78. (in Chinese) | |
[24] | DALTON-MORGAN J, HAYWARD A, ALAMERY S, et al. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes[J]. Functional & Integrative Genomics, 2014, 14(4): 643-655. |
[25] | 马霓, 李云昌, 胡琼, 等. 我国南方冬油菜机械化生产农艺研究进展[J]. 中国油料作物学报, 2010, 32(3): 451-456. |
MA N, LI Y C, HU Q, et al. Research of agronomic techniques for mechanical production of winter rape (Brassica napus L.) in South China[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 451-456. (in Chinese with English abstract) | |
[26] | 陈新军, 戚存扣, 浦惠明, 等. 甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系[J]. 中国油料作物学报, 2007, 29(1): 54-57. |
CHEN X J, QI C K, PU H M, et al. Evaluation of lodging resistance in rapeseed(Brassica napus L.) and relationship between plant architecture and lodging resistance[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(1): 54-57. (in Chinese with English abstract) | |
[27] | 库丽霞, 张君, 张伟强, 等. 作物株型相关性状分子机理的研究进展[J]. 中国农学通报, 2010, 26(5): 20-25. |
KU L X, ZHANG J, ZHANG W Q, et al. Study advances in molecular mechanism of the crop architecture relevant traits[J]. Chinese Agricultural Science Bulletin, 2010, 26(5): 20-25. (in Chinese with English abstract) | |
[28] | 马娟, 王铁固, 张怀胜, 等. 玉米叶夹角、叶向值主基因+多基因遗传模型分析[J]. 河南农业科学, 2012, 41(5): 15-19. |
MA J, WANG T G, ZHANG H S, et al. The major genes plus polygenes genetic analysis on leaf angle and leaf orientation value in maize[J]. Journal of Henan Agricultural Sciences, 2012, 41(5): 15-19. (in Chinese with English abstract) | |
[29] | 冯辉, 王五宏, 徐娜, 等. 串番茄主要株型性状的遗传研究[J]. 中国农业科学, 2008, 41(12): 4134-4139. |
FENG H, WANG W H, XU N, et al. Inheritance of several plant type characters in truss tomato[J]. Scientia Agricultura Sinica, 2008, 41(12): 4134-4139. (in Chinese with English abstract) | |
[30] | 庞欣, 郭勤卫, 张婷. 辣椒株高主基因+多基因混合遗传模型分析[J]. 中国蔬菜, 2023(11):80-86. |
PANG X, GUO Q W, ZHANG T, et al. Genetic analysis of plant height trait in pepper with major gene plus polygene mixed model[J]. Chinese vegetables, 2023(11): 80-86. (in Chinese) |
[1] | 蔡诗怡, 虞慧芳, 王建升, 祝彪, 沈钰森, 顾宏辉, 盛小光. 花椰菜“坐球高度”性状的主基因+多基因遗传分析[J]. 浙江农业学报, 2024, 36(3): 527-533. |
[2] | 杨存明, 刘静, 张梦华, 张晓雪, 刘桂芬, 何军敏, 毛静艺, 李雪, 唐丽, 张文静, 潘林香, 田可川, 黄锡霞. 鲁中肉羊不同生长阶段体尺体重的遗传参数估计[J]. 浙江农业学报, 2024, 36(1): 48-57. |
[3] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[4] | 陈纪鹏, 刘小林, 李生强, 刘显军, 胡月清, 陈桃. 白菜型油菜黄芽白与甘蓝型油菜湘油15种间杂交及其杂种后代的遗传学特征[J]. 浙江农业学报, 2021, 33(7): 1170-1176. |
[5] | 杨加付;饶立兵;顾宏辉 . 花椰菜熟期性状的遗传效应及其与环境互作分析[J]. , 2004, 16(4): 0-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||