浙江农业学报 ›› 2025, Vol. 37 ›› Issue (7): 1397-1406.DOI: 10.3969/j.issn.1004-1524.20240779
咸若彤1,2(), 缪青梅2, 彭城2, 陈笑芸2, 杨蕾2, 徐晓丽2, 魏巍2, 徐俊锋2, 李玥莹1,*(
), 汪小福2,*(
)
收稿日期:
2024-09-04
出版日期:
2025-07-25
发布日期:
2025-08-20
作者简介:
咸若彤(2000—),女,辽宁阜新人,硕士研究生,研究方向为植物基因工程。E-mail:ruotongx11@163.com
通讯作者:
*李玥莹,E⁃mail:yueyinglicn@163.com;汪小福,E⁃mail:yywxf1981@163.com
基金资助:
XIAN Ruotong1,2(), MIAO Qingmei2, PENG Cheng2, CHEN Xiaoyun2, YANG Lei2, XU Xiaoli2, WEI Wei2, XU Junfeng2, LI Yueying1,*(
), WANG Xiaofu2,*(
)
Received:
2024-09-04
Online:
2025-07-25
Published:
2025-08-20
摘要:
WYN17132是我国自主研发的转am79-epsps基因耐草甘膦转基因玉米品种,已获得全国生产应用安全证书,但目前缺少相应的检测方法。为进一步落实我国转基因产品监测工作,本研究建立了针对该转化体特异性的实时荧光PCR检测方法。以转基因玉米WYN17132的外源插入序列与玉米基因组连接区域的侧翼序列为靶序列,设计多组特异性引物探针,筛选最佳引物探针组合,并系统评价该方法的特异性、检出限(LOD)和再现性。通过筛选,确定17132RB-qF3/qR3/qP3为最佳引物探针组合,该组合扩增片段为132 bp。本研究建立的WYN17132转化体特异性实时荧光PCR检测方法特异性良好,仅对目标转化体产生特异性扩增;方法灵敏度高,检出限可达0.05%;再现性稳定,适用性强。该检测方法能满足转基因玉米WYN17132的检测需求,为我国转基因玉米的监测监管和标识溯源提供了技术支撑。
中图分类号:
咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406.
XIAN Ruotong, MIAO Qingmei, PENG Cheng, CHEN Xiaoyun, YANG Lei, XU Xiaoli, WEI Wei, XU Junfeng, LI Yueying, WANG Xiaofu. Establishment and application of event-specific real-time PCR detection method of transgenic maize WYN17132[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1397-1406.
5’端引物和探针 5’primers and probes | 序列Sequence(5’-3’) | 3’端引物和探针 3’primers and probes | 序列Sequence(5’-3’) |
---|---|---|---|
17132LB-qF1 | CCGGTTCGTTTTGAGTAGGA | 17132RB-qF1 | GCGCGCAAACTAGGATAAA |
17132LB-qR1 | GTCCGCAATGTGTTATTAAGTTGTC | 17132RB-qR1 | CGGGTTGATTTGGTTAAAGC |
17132LB-qP1 | TGGTGTAAACAAATTGACGC | 17132RB-qP1 | CATCTTCAAAAAGAGACCC |
17132LB-qF2 | ACAAATAGGGTGTGGCTGTT | 17132RB-qF2 | AGCGCGCAAACTAGGATAAA |
17132LB-qR2 | AACGTCCGCAATGTGTTATTAAG | 17132RB-qR2 | TCCTAGACTCAGGCGAACAA |
17132LB-qP2 | CAGCGTCTCGTACCGGTTCGTTT | 17132RB-qP2 | AACCAAATCAACCCGTCGTCCGTA |
17132LB-qF3 | CTCACGGACGGAGACAAATAG | 17132RB-qF3 | TGATTAGAGTCCCGCAATTATACA |
17132LB-qR3 | GCGTCAATTTGTTTACACCACA | 17132RB-qR3 | CGACGGGTTGATTTGGTTAAAG |
17132RB-qP3 | TAGGATAAATTATCGCGCGCGGTGT |
表1 引物和探针序列信息
Table 1 Sequences of primers and probes
5’端引物和探针 5’primers and probes | 序列Sequence(5’-3’) | 3’端引物和探针 3’primers and probes | 序列Sequence(5’-3’) |
---|---|---|---|
17132LB-qF1 | CCGGTTCGTTTTGAGTAGGA | 17132RB-qF1 | GCGCGCAAACTAGGATAAA |
17132LB-qR1 | GTCCGCAATGTGTTATTAAGTTGTC | 17132RB-qR1 | CGGGTTGATTTGGTTAAAGC |
17132LB-qP1 | TGGTGTAAACAAATTGACGC | 17132RB-qP1 | CATCTTCAAAAAGAGACCC |
17132LB-qF2 | ACAAATAGGGTGTGGCTGTT | 17132RB-qF2 | AGCGCGCAAACTAGGATAAA |
17132LB-qR2 | AACGTCCGCAATGTGTTATTAAG | 17132RB-qR2 | TCCTAGACTCAGGCGAACAA |
17132LB-qP2 | CAGCGTCTCGTACCGGTTCGTTT | 17132RB-qP2 | AACCAAATCAACCCGTCGTCCGTA |
17132LB-qF3 | CTCACGGACGGAGACAAATAG | 17132RB-qF3 | TGATTAGAGTCCCGCAATTATACA |
17132LB-qR3 | GCGTCAATTTGTTTACACCACA | 17132RB-qR3 | CGACGGGTTGATTTGGTTAAAG |
17132RB-qP3 | TAGGATAAATTATCGCGCGCGGTGT |
样品名称 Sample name | 含有的转化体 Containing transformant |
---|---|
转基因大豆混合样 Composite sample of transgenic soybeans | GTS40-3-2、MON89788、A5547-127、A2704-12、356043、305423、CV127、MON87701、MON87708、MON87769、MON87705、FG72和DAS81419-2,13个转化体混合制成1个样品,每个转化体的质量分数为1% GTS40-3-2, MON89788, A5547-127, A2704-12, 356043, 305423, CV127, MON87701, MON87708, MON87769, MON87705, FG72 and DAS81419-2 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他转基因玉米 混合样品 Composite sample of other transgenic maizes | Bt11、Bt176、MON810、MON863、GA21、NK603、T25、TC1507、MON89034、MON88017、59122、MIR604、3272、MON87460、DAS40278-9、4114、MON87427和5307,18个转化体混合制成1个样品,每个转化体的质量分数为1% Bt11, Bt176, MON810, MON863, GA21, NK603, T25, TC1507, MON89034, MON88017, 59122, MIR604, 3272, MON87460, DAS40278-9, 4114, MON87427 and 5307 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因水稻混合样品 Composite sample of transgenic rices | TT51-1、KF-6、KMD-1、M12、KF-8、KF-2、G6H1和T1C-19,8个转化体混合制成1个样品,每个转化体的质量分数为1% TT51-1, KF-6, KMD-1, M12, KF-8, KF-2, G6H1 and T1C-19 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因油菜混合样品 Composite sample of transgenic rapeseeds | MS1、MS8、RF1、RF2、RF3、T45、Oxy-235、Topas19/2、MON88302和73496,10个转化体混合制成1个样品,每个转化体的质量分数为1% MS1, MS8, RF1, RF2, RF3, T45, Oxy-235, Topas19/2, MON88302 and 73496 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因棉花混合样品 Composite sample of transgenic cottons | MON1445、MON531、MON15985、LLCOTTON25、MON88913、GHB614和COT102,7个转化体混合制成1个样品,每个转化体的质量分数为1% MON1445, MON531, MON15985, LLCOTTON25, MON88913, GHB614 and COT102 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他非转基因玉米 混合样品 Composite sample of other non-transgenic maizes | 天农九、先玉335和郑单958这3个非转基因玉米等量混合 Tiannong Jiu, Xianyu 335 and Zhengdan 958, these three non-transgenic maize varieties were equally mixed |
表2 特异性测试样品表
Table 2 Samples for specificity test
样品名称 Sample name | 含有的转化体 Containing transformant |
---|---|
转基因大豆混合样 Composite sample of transgenic soybeans | GTS40-3-2、MON89788、A5547-127、A2704-12、356043、305423、CV127、MON87701、MON87708、MON87769、MON87705、FG72和DAS81419-2,13个转化体混合制成1个样品,每个转化体的质量分数为1% GTS40-3-2, MON89788, A5547-127, A2704-12, 356043, 305423, CV127, MON87701, MON87708, MON87769, MON87705, FG72 and DAS81419-2 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他转基因玉米 混合样品 Composite sample of other transgenic maizes | Bt11、Bt176、MON810、MON863、GA21、NK603、T25、TC1507、MON89034、MON88017、59122、MIR604、3272、MON87460、DAS40278-9、4114、MON87427和5307,18个转化体混合制成1个样品,每个转化体的质量分数为1% Bt11, Bt176, MON810, MON863, GA21, NK603, T25, TC1507, MON89034, MON88017, 59122, MIR604, 3272, MON87460, DAS40278-9, 4114, MON87427 and 5307 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因水稻混合样品 Composite sample of transgenic rices | TT51-1、KF-6、KMD-1、M12、KF-8、KF-2、G6H1和T1C-19,8个转化体混合制成1个样品,每个转化体的质量分数为1% TT51-1, KF-6, KMD-1, M12, KF-8, KF-2, G6H1 and T1C-19 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因油菜混合样品 Composite sample of transgenic rapeseeds | MS1、MS8、RF1、RF2、RF3、T45、Oxy-235、Topas19/2、MON88302和73496,10个转化体混合制成1个样品,每个转化体的质量分数为1% MS1, MS8, RF1, RF2, RF3, T45, Oxy-235, Topas19/2, MON88302 and 73496 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因棉花混合样品 Composite sample of transgenic cottons | MON1445、MON531、MON15985、LLCOTTON25、MON88913、GHB614和COT102,7个转化体混合制成1个样品,每个转化体的质量分数为1% MON1445, MON531, MON15985, LLCOTTON25, MON88913, GHB614 and COT102 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他非转基因玉米 混合样品 Composite sample of other non-transgenic maizes | 天农九、先玉335和郑单958这3个非转基因玉米等量混合 Tiannong Jiu, Xianyu 335 and Zhengdan 958, these three non-transgenic maize varieties were equally mixed |
图1 引物和探针的位置与序列信息 A, WYN17132左右边界处的多组引物和探针位置,其中右边界红色框内为最终选取的最佳引物探针组合17132RB-qF3/qR3/qP3;B,WYN17132右边界序列(5’-3’),其中1-203为部分外源插入序列,204-266为部分玉米基因组序列;红框内为最佳引物探针组合序列或反向互补序列,黑框内为右边界其余引物探针序列或反向互补序列;1,17132RB-qF1序列;2,17132RB-qR1的反向互补序列;3,17132RB-qP1序列;4,17132RB-qF2序列;5,17132RB-qR2的反向互补序列;6,17132RB-qP2序列;7,17132RB-qF3序列;8,17132RB-qR3的反向互补序列;9,17132RB-qP3序列。
Fig.1 Position and sequence information of primers and probes A, Multiple sets of primers and probe positions at the left and right boundaries of WYN17132, with the optimal primer probe combination 17132RB-qF3/qR3/qP3 ultimately selected within the red box on the right boundary; B, WYN17132 right boundary sequence (5'-3'), where 1-203 is a partial exogenous insertion sequence and 204-266 is a partial maize genome sequence; The red box represents the optimal primer probe combination sequence or reverse complementary sequence, while the black box represents the other primer probe sequences or reverse complementary sequences on the right boundary; 1, 17132RB-qF1 sequence; 2, The reverse complementary sequence of 17132RB-qR1; 3, 17132RB-qP1 sequence; 4, 17132RB-qF2 sequence; 5, Reverse complementary sequence of 17132RB-qR2; 6, 17132RB-qP2 sequence; 7, 17132RB-qF3 sequence; 8, The reverse complementary sequence of 17132RB-qR3; 9, 17132RB-qP3 sequence.
图3 引物和探针浓度的优化结果 1~5分别代表0.1、0.2、0.4、0.6、0.8 μmol·L-1引物浓度体系。
Fig.3 Optimization results of primer and probe concentrations Primer concentration systems of 0.1, 0.2, 0.4, 0.6, 0.8 μmol·L-1 are represented by 1 to 5, respectively.
图4 方法的特异性检测结果 1,空白对照、阴性对照、转基因大豆混合样品、其他转基因玉米混合样品、转基因水稻混合样品、转基因油菜混合样品、转基因棉花混合样品和其他非转基因玉米混合样品;2,质量分数为1%的玉米WYN17132转化体材料。
Fig.4 Results of the method specificity test 1, Blank control, negative control, composite sample of transgenic soybeans, composite sample of other transgenic maizes, composite sample of transgenic rices, composite sample of transgenic rapeseeds, composite sample of transgenic cottons, and composite sample of other non transgenic maizes; 2, WYN17132 transformant material with a mass fraction of 1%.
图5 方法的检出限检测结果 A~F,WYN17132转化体DNA质量分数分别为0.25%、0.10%、0.05%、0.025%、0.012 5%、0.002 5%的模板;G,阴性与空白对照;H,WYN17132转化体DNA质量分数为0.05%的模板,60次重复。
Fig.5 Limit of detection test results of the method A-F, Template containing WYN17132 transformant DNA at mass fractions of 0.25%, 0.10%, 0.05%, 0.025%, 0.012 5%, and 0.002 5%, respectively; G, Negative and blank controls; H, Template containing WYN17132 transformant DNA at mass fractions of 0.05%, repeated 60 times.
图6 方法的再现性测试结果 A,PCR仪器1检测结果;B,PCR仪器2检测结果。
Fig.6 Results of the method reproducibility test A, Detection results of PCR instrument 1; B, Detection results of PCR instrument 2.
图7 WYN17132转基因玉米加工样品的检测结果 1,阳性对照;2,高温高压处理的3%和5% WYN17132转基因玉米样品与蒸煮处理的3%和5% WYN17132转基因玉米样品;3,高温高压处理的1% WYN17132转基因玉米样品和蒸煮处理的1% WYN17132转基因玉米样品;4,阴性对照和空白对照。
Fig.7 Test results of transgenic maize WYN17132 processed samples 1, Positive control; 2, The 3% and 5% WYN17132 transgenic maize samples treated with high-temperature and high-pressure (HTHP), and the 3% and 5% WYN17132 transgenic maize samples treated with cooking; 3, The 1% WYN17132 transgenic maize samples treated with HTHP, and the 1% WYN17132 transgenic maize samples treated with cooking; 4, Negative control and blank control.
[1] | 张宇涵, 李星霖, 刘丽君, 等. 玉米转录因子ZmNAC59调控植物抗盐性[J]. 西北植物学报, 2024, 44(3): 381-395. |
ZHANG Y H, LI X L, LIU L J, et al. Transcription factor ZmNAC59 regulates plant salt resistance in Zea mays L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(3): 381-395. (in Chinese with English abstract) | |
[2] | 曾强, 周伟, 郭欢乐, 等. 不同遗传背景的转Cry1C基因玉米品系的室内抗虫性鉴定[J]. 湖南农业科学, 2024(2): 1-5. |
ZENG Q, ZHOU W, GUO H L, et al. Insect resistance identification of transgenic maize with Cry1C gene from different genetic backgrounds in laboratory[J]. Hunan Agricultural Sciences, 2024(2): 1-5. (in Chinese with English abstract) | |
[3] | LIU M M, ZHANG X J, GAO Y, et al. Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance[J]. Journal of Zhejiang University Science B, 2018, 19(8): 610-619. |
[4] | DU D X, GENG C J, ZHANG X B, et al. Transgenic maize lines expressing a Cry1C gene are resistant to insect pests[J]. Plant Molecular Biology Reporter, 2014, 32(2): 549-557. |
[5] | 温伟. 转基因技术在现代玉米育种中的应用[J]. 农业与技术, 2024, 44(7): 38-41. |
WEN W. Application of transgenic technology in modern maize breeding[J]. Agriculture and Technology, 2024, 44(7): 38-41. (in Chinese) | |
[6] | 杨旭东. 玉米种植中减肥增效技术应用措施[J]. 种子科技, 2024, 42(7): 63-65. |
YANG X D. Application measures of weight loss and efficiency improvement technology in maize planting[J]. Seed Science & Technology, 2024, 42(7): 63-65. (in Chinese) | |
[7] | 崔爱民, 张久刚, 张虎, 等. 我国玉米生产现状及发展变革[J]. 中国农业科技导报, 2020, 22(7): 10-19. |
CUI A M, ZHANG J G, ZHANG H, et al. Preliminary exploration on current situation and development of maize production in China[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19. (in Chinese with English abstract) | |
[8] | TANUMIHARDJO S A, MCCULLEY L, ROH R, et al. Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals[J]. Global Food Security, 2020, 25: 100327. |
[9] | MITCHELL N J, BOWERS E, HURBURGH C, et al. Potential economic losses to the US corn industry from aflatoxin contamination[J]. Food Additives & Contaminants: Part A, 2016, 33(3): 540-550. |
[10] | 油梅红, 景三革. 现代农业技术在小麦和玉米种植中的应用与效果[J]. 种子科技, 2024, 42(5): 158-160. |
YOU M H, JING S G. Application and effect of modern agricultural technology in wheat and corn planting[J]. Seed Science & Technology, 2024, 42(5): 158-160. (in Chinese) | |
[11] | 贺志勇. 生物育种对国民经济与粮食安全的贡献分析[J]. 分子植物育种, 2024, 22(13): 4505-4510. |
HE Z Y. The contribution analysis of biobreeding to national economy and food security[J]. Molecular Plant Breeding, 2024, 22(13): 4505-4510. (in Chinese with English abstract) | |
[12] | 刘婷婷, 仝涛, 黄昆仑. 转基因玉米的研究进展和食用安全性评价[J]. 生物技术进展, 2022, 12(4): 523-531. |
LIU T T, TONG T, HUANG K L. Research progress and safety evaluation of transgenic corn[J]. Current Biotechnology, 2022, 12(4): 523-531. (in Chinese with English abstract) | |
[13] | PELLEGRINO E, BEDINI S, NUTI M, et al. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data[J]. Scientific Reports, 2018, 8: 3113. |
[14] | 李红杰, 贾亚男, 张彦军, 等. 国内外转基因与基因编辑作物监管现状[J]. 中国农业大学学报, 2023, 28(9): 1-11. |
LI H J, JIA Y N, ZHANG Y J, et al. Regulatory status of GM and gene-edited crops at domestic and abroad[J]. Journal of China Agricultural University, 2023, 28(9): 1-11. (in Chinese with English abstract) | |
[15] | 黄耀辉, 樊殿峰, 焦悦, 等. 浅谈多国转基因产品标识制度对我国的启示[J]. 生物技术进展, 2022, 12(4): 516-522. |
HUANG Y H, FAN D F, JIAO Y, et al. Enlightenment of GMO labeling system in other countries to China[J]. Current Biotechnology, 2022, 12(4): 516-522. (in Chinese with English abstract) | |
[16] | XU J Y, ZHENG Q Y, YU L, et al. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25[J]. Food Science & Nutrition, 2013, 1(6): 432-438. |
[17] | TAKABATAKE R, KAGIYA Y, MINEGISHI Y, et al. Rapid screening detection of genetically modified crops by loop-mediated isothermal amplification with a lateral flow dipstick[J]. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7839-7845. |
[18] | SÁNCHEZ-PANIAGUA LÓPEZ M, MANZANARES-PALENZUELA C L, LÓPEZ-RUIZ B. Biosensors for GMO testing: nearly 25 years of research[J]. Critical Reviews in Analytical Chemistry, 2018, 48(5): 391-405. |
[19] | YANG L T, WANG C M, HOLST-JENSEN A, et al. Characterization of GM events by insert knowledge adapted re-sequencing approaches[J]. Scientific Reports, 2013, 3: 2839. |
[20] | LI Y J, LI J, WU Y H, et al. Successful detection of foreign inserts in transgenic rice TT51-1 (BT63) by RNA-sequencing combined with PCR[J]. Journal of the Science of Food and Agriculture, 2017, 97(5): 1634-1639. |
[21] | BROEDERS S, HUBER I, GROHMANN L, et al. Guidelines for validation of qualitative real-time PCR methods[J]. Trends in Food Science & Technology, 2014, 37(2): 115-126. |
[22] | HOLST-JENSEN A, BERTHEAU Y, DE LOOSE M, et al. Detecting un-authorized genetically modified organisms (GMOs) and derived materials[J]. Biotechnology Advances, 2012, 30(6): 1318-1335. |
[23] | 李允静, 肖芳, 武玉花, 等. 抗逆大豆IND-ØØ41Ø-5转化体特异性定量PCR检测方法的建立及其标准化[J]. 中国农业科学, 2023, 56(13): 2443-2460. |
LI Y J, XIAO F, WU Y H, et al. Establishment and standardization of event-specific real-time quantitative PCR detection method of stress-resistant soybean IND-ØØ41Ø-5[J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460. (in Chinese with English abstract) | |
[24] | 罗建兴, 刘国强, 呼李乐, 等. 转基因作物检测技术研究进展[J]. 食品安全质量检测学报, 2023, 14(15): 139-148. |
LUO J X, LIU G Q, HU L L, et al. Research progress on detection technology of genetically modified crops[J]. Journal of Food Safety & Quality, 2023, 14(15): 139-148. (in Chinese with English abstract) | |
[25] | 沈泓, 李超, 李珏. 分子生物学技术在转基因食品检测领域中的研究进展[J]. 中国农业信息, 2017, 29(15): 57-59. |
SHEN H, LI C, LI J. Research progress of molecular biology technology in the field of genetically modified food detection[J]. China Agricultural Information, 2017, 29(15): 57-59. (in Chinese) | |
[26] | 李凌燕, 肖冰, 张旭冬, 等. 转基因玉米MON87411实时荧光PCR定性检测方法的建立及其标准化[J]. 生物技术进展, 2024, 14(2): 257-262. |
LI L Y, XIAO B, ZHANG X D, et al. Establishment and standardization of real-time PCR method for qualitative detection of genetically modified maize MON87411[J]. Current Biotechnology, 2024, 14(2): 257-262. (in Chinese with English abstract) | |
[27] | 杨华, 彭城, 肖英平, 等. 转基因大豆SHZD32-1转化体普通PCR和qRT-PCR检测方法的研究[J]. 农业生物技术学报, 2018, 26(3): 492-501. |
YANG H, PENG C, XIAO Y P, et al. Study of conventional PCR and qRT-PCR detection methods for genetically modified soybean(Glycine max) SHZD32-1[J]. Journal of Agricultural Biotechnology, 2018, 26(3): 492-501. (in Chinese with English abstract) |
[1] | 陈曦1,张明哲1,林晓佳1,吴志毅1,陈吴健1,吴蓉2,夏拯1. 玉米细菌性枯萎病和玉米内州萎焉病的酶联免疫—实时荧光PCR检测[J]. 浙江农业学报, 2014, 26(5): 1273-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||