[1] |
周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324.
|
|
ZHOU C J, SONG J, XIANG W S. Research progresses in artificial intelligence-based crop disease identification[J]. Journal of Plant Protection, 2022, 49(1): 316-324. (in Chinese with English abstract)
|
[2] |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 14-19.
|
[3] |
孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215.
|
|
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. (in Chinese with English abstract)
|
[4] |
TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
|
[5] |
何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别[J]. 计算机工程, 2021, 47(5): 285-291.
|
|
HE X, LI S Q, LIU B. Identification of grape leaf diseases based on multi-scale residual neural network[J]. Computer Engineering, 2021, 47(5): 285-291. (in Chinese with English abstract)
|
[6] |
许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236.
|
|
XU J H, SHAO M Y, WANG Y C, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. (in Chinese with English abstract)
|
[7] |
王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
|
|
WANG L B, ZHANG B, YAO J F, et al. Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129. (in Chinese with English abstract)
|
[8] |
马宇, 单玉刚, 袁杰. 基于三通道注意力网络的番茄叶部病害识别[J]. 科学技术与工程, 2021, 21(25): 10789-10795.
|
|
MA Y, SHAN Y G, YUAN J. Tomato leaf disease recognition based on three-channel attention network[J]. Science Technology and Engineering, 2021, 21(25): 10789-10795. (in Chinese with English abstract)
|
[9] |
刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.
|
|
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract)
|
[10] |
刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报, 2021, 37(2): 187-195.
|
|
LIU Y, GAO G Q. Identification of multiple leaf diseases using improved SqueezeNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 187-195. (in Chinese with English abstract)
|
[11] |
ANWAR S, HWANG K, SUNG W. Structured pruning of deep convolutional neural networks[J]. ACM Journal on Emerging Technologies in Computing Systems, 2017, 13(3): 1-18.
|
[12] |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2022-06-30]. 2015: arXiv: 1503.02531. https://arxiv.org/abs/1503.0253.
|
[13] |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100.
|
[14] |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size[EB/OL]. [2022-06-30]. 2016: arXiv: 1602.07360. https://arxiv.org/abs/1602.07360.
|
[15] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6848-6856.
|
[16] |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-06-30]. 2017: arXiv: 1704.04861. https://arxiv.org/abs/1704.04861.
|
[17] |
LUO J H, WU J X, LIN W Y. ThiNet: a filter level pruning method for deep neural network compression[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 5068-5076.
|
[18] |
HE Y, LIU P, WANG Z W, et al. Filter pruning via geometric Median for deep convolutional neural networks acceleration[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020: 4335-4344.
|
[19] |
LIN M B, JI R R, WANG Y, et al. HRank: filter pruning using high-rank feature map[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 1526-1535.
|
[20] |
樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159.
|
|
FAN X P, XU Y, ZHOU J P, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. (in Chinese with English abstract)
|
[21] |
何东健, 王鹏, 牛童, 等. 基于改进残差网络的田间葡萄霜霉病病害程度分级模型[J]. 农业机械学报, 2022, 53(1): 235-243.
|
|
HE D J, WANG P, NIU T, et al. Classification model of grape downy mildew disease degree in field based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 235-243. (in Chinese with English abstract)
|
[22] |
赵辉, 曹宇航, 岳有军, 等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报, 2021, 37(18): 136-142.
|
|
ZHAO H, CAO Y H, YUE Y J, et al. Field weed recognition based on improved DenseNet[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 136-142. (in Chinese with English abstract)
|
[23] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-06-30]. 2014: arXiv: 1409.1556. https://arxiv.org/abs/1409.1556.
|
[24] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778.
|
[25] |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
|
[26] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269.
|
[27] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2022-06-30]. 2015: arXiv: 1502.03167. https://arxiv.org/abs/1502.03167.
|
[28] |
LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2755-2763.
|
[29] |
HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. [2022-06-30]. 2015: arXiv: 1511.08060. https://arxiv.org/abs/1511.08060.
|