浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2250-2264.DOI: 10.3969/j.issn.1004-1524.20221193
收稿日期:
2022-08-14
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
刘媛媛(1978—),女,江西永新人,硕士,副教授,研究方向为农业物联网与机器学习。E-mail:lyy.78@163.com
通讯作者:
朱路,E-mail:基金资助:
LIU Yuanyuan(), WANG Dingkun, WU Lei, HUANG Dechang, ZHU Lu(
)
Received:
2022-08-14
Online:
2023-09-25
Published:
2023-10-09
摘要:
深度学习为植物病害识别提供了新方法,但是目前大多数深度学习模型的参数众多,难以在存储和计算资源受限的智能手机或嵌入式传感器节点等边缘设备上使用。为此,以植物叶片为研究对象,基于知识蒸馏和模型剪枝方法开展基于轻量化模型的植物病害识别研究。首先,改进ResNet模型,在知识蒸馏中引入一个或多个助教网络训练模型;然后,经过稀疏化训练后,利用模型剪枝获得轻量化的学生网络模型;接着,使用助教网络和学习率倒带重训练该学生网络模型,在减小模型规模的同时保证模型的性能。结果表明:在包含14种植物共38个类别的数据集上,将模型剪枝90%后,模型准确率为97.78%,比原模型提高1.49百分点;在包含5个类别苹果叶的数据集上,将模型剪枝70%后,模型准确率为91.94%,比原模型提高4.85百分点。提出的轻量化模型能够移植在Android平台上并有效运行,可为嵌入式终端精准识别植物病害提供新方案。
中图分类号:
刘媛媛, 王定坤, 邬雷, 黄德昌, 朱路. 基于知识蒸馏和模型剪枝的轻量化模型植物病害识别[J]. 浙江农业学报, 2023, 35(9): 2250-2264.
LIU Yuanyuan, WANG Dingkun, WU Lei, HUANG Dechang, ZHU Lu. A light-weight model for plant disease identification based on model pruning and knowledge distillation[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2250-2264.
植物 Plant | 类别(编号) Category (No.) | 训练集图像数量 Images quantity in training set | 测试集图像数量 Image quantity in test set |
---|---|---|---|
苹果Apple | 疮痂病Scab (0) | 2 016 | 504 |
黑腐病Black rot (1) | 1 987 | 497 | |
锈病Cedar rust (2) | 1 760 | 440 | |
健康Healthy (3) | 2 008 | 502 | |
蓝莓Blueberry | 健康Healthy (4) | 1 816 | 454 |
樱桃Cherry | 白粉病Powdery mildew (5) | 1 683 | 421 |
健康Healthy (6) | 1 826 | 456 | |
玉米Maize | 灰叶斑病Gray leaf spot (7) | 1 642 | 410 |
锈病Common rust (8) | 1 907 | 477 | |
北方叶枯病Northern leaf blight (9) | 1 908 | 477 | |
健康Healthy (10) | 1 859 | 465 | |
葡萄Grape | 黑腐病Black rot (11) | 1 888 | 472 |
黑麻疹Black measles (12) | 1 920 | 480 | |
叶枯病Leaf blight (13) | 1 722 | 430 | |
健康Healthy (14) | 1 692 | 423 | |
橘子Orange | 黄龙病Huanglongbing (15) | 2 010 | 503 |
桃Peach | 桃菌斑Bacterial spot (16) | 1 838 | 459 |
健康Healthy (17) | 1 728 | 432 | |
胡椒Pepper | 铃菌斑Bacterial spot (18) | 1 913 | 478 |
健康Healthy (19) | 1 988 | 492 | |
马铃薯Potato | 早疫病Early blight (20) | 1 939 | 485 |
晚疫病Late blight (21) | 1 939 | 485 | |
健康Healthy (22) | 1 824 | 456 | |
树莓Raspberry | 健康Healthy (23) | 1 781 | 445 |
黄豆Soybean | 健康Healthy (24) | 2 022 | 505 |
南瓜Squash | 白粉病Powdery mildew (25) | 1 736 | 424 |
草莓Strawberry | 叶焦病Leaf scorch (26) | 1 774 | 444 |
健康Healthy (27) | 1 824 | 456 | |
番茄Tomato | 细菌斑Bacterial spot (28) | 1 702 | 425 |
早疫病Early blight (29) | 1 920 | 480 | |
晚疫病Late blight (30) | 1 851 | 463 | |
叶霉病Leaf mold (31) | 1 882 | 470 | |
叶斑病Septoria leaf spot (32) | 1 745 | 436 | |
二斑叶螨病Two-spotted spider mite (33) | 1 741 | 435 | |
轮斑病Target spot (34) | 1 827 | 457 | |
黄曲叶病Yellow leaf curl virus (35) | 1 961 | 490 | |
花叶病Mosaic virus (36) | 1 790 | 448 | |
健康Healthy (37) | 1 926 | 481 |
表1 New Plant Diseases Dataset的基本信息
Table 1 Basic informatino of New Plant Diseases Dataset
植物 Plant | 类别(编号) Category (No.) | 训练集图像数量 Images quantity in training set | 测试集图像数量 Image quantity in test set |
---|---|---|---|
苹果Apple | 疮痂病Scab (0) | 2 016 | 504 |
黑腐病Black rot (1) | 1 987 | 497 | |
锈病Cedar rust (2) | 1 760 | 440 | |
健康Healthy (3) | 2 008 | 502 | |
蓝莓Blueberry | 健康Healthy (4) | 1 816 | 454 |
樱桃Cherry | 白粉病Powdery mildew (5) | 1 683 | 421 |
健康Healthy (6) | 1 826 | 456 | |
玉米Maize | 灰叶斑病Gray leaf spot (7) | 1 642 | 410 |
锈病Common rust (8) | 1 907 | 477 | |
北方叶枯病Northern leaf blight (9) | 1 908 | 477 | |
健康Healthy (10) | 1 859 | 465 | |
葡萄Grape | 黑腐病Black rot (11) | 1 888 | 472 |
黑麻疹Black measles (12) | 1 920 | 480 | |
叶枯病Leaf blight (13) | 1 722 | 430 | |
健康Healthy (14) | 1 692 | 423 | |
橘子Orange | 黄龙病Huanglongbing (15) | 2 010 | 503 |
桃Peach | 桃菌斑Bacterial spot (16) | 1 838 | 459 |
健康Healthy (17) | 1 728 | 432 | |
胡椒Pepper | 铃菌斑Bacterial spot (18) | 1 913 | 478 |
健康Healthy (19) | 1 988 | 492 | |
马铃薯Potato | 早疫病Early blight (20) | 1 939 | 485 |
晚疫病Late blight (21) | 1 939 | 485 | |
健康Healthy (22) | 1 824 | 456 | |
树莓Raspberry | 健康Healthy (23) | 1 781 | 445 |
黄豆Soybean | 健康Healthy (24) | 2 022 | 505 |
南瓜Squash | 白粉病Powdery mildew (25) | 1 736 | 424 |
草莓Strawberry | 叶焦病Leaf scorch (26) | 1 774 | 444 |
健康Healthy (27) | 1 824 | 456 | |
番茄Tomato | 细菌斑Bacterial spot (28) | 1 702 | 425 |
早疫病Early blight (29) | 1 920 | 480 | |
晚疫病Late blight (30) | 1 851 | 463 | |
叶霉病Leaf mold (31) | 1 882 | 470 | |
叶斑病Septoria leaf spot (32) | 1 745 | 436 | |
二斑叶螨病Two-spotted spider mite (33) | 1 741 | 435 | |
轮斑病Target spot (34) | 1 827 | 457 | |
黄曲叶病Yellow leaf curl virus (35) | 1 961 | 490 | |
花叶病Mosaic virus (36) | 1 790 | 448 | |
健康Healthy (37) | 1 926 | 481 |
层名称 Layer name | ResNet-(9*n+2)模型层 输出大小 Layer output size of ResNet-(9*n+2) model | ResNet-(9*n+2) 模型结构 Structure of ResNet- (9*n+2) model | ResNet-(12*n+2)模型层 输出大小 Layer output size of ResNet-(12*n+2) model | ResNet-(12*n+2) 模型结构 Structure of ResNet- (12*n+2) model |
---|---|---|---|---|
Conv1 | 32×32 | 3×3,16 | 112×112 | 7×7,64 |
Layer1 | 32×32 | 112×112 | ||
Layer2 | 16×16 | 56×56 | ||
Layer3 | 8×8 | 28×28 | ||
Layer4 | — | — | 14×14 |
表2 模型结构
Table 2 Diagram of model structure
层名称 Layer name | ResNet-(9*n+2)模型层 输出大小 Layer output size of ResNet-(9*n+2) model | ResNet-(9*n+2) 模型结构 Structure of ResNet- (9*n+2) model | ResNet-(12*n+2)模型层 输出大小 Layer output size of ResNet-(12*n+2) model | ResNet-(12*n+2) 模型结构 Structure of ResNet- (12*n+2) model |
---|---|---|---|---|
Conv1 | 32×32 | 3×3,16 | 112×112 | 7×7,64 |
Layer1 | 32×32 | 112×112 | ||
Layer2 | 16×16 | 56×56 | ||
Layer3 | 8×8 | 28×28 | ||
Layer4 | — | — | 14×14 |
图4 知识蒸馏过程示意图 C,卷积层;P,池化层,FC,全连接层。下同。
Fig.4 Diagram of knowledge distillation C, Convolution layer; P, Pooling layer; FC, Fully connected layer. The same as below.
模型 Model | 准确率 Accuracy/% | 参数量 Params | 计算量 FLOPs/G |
---|---|---|---|
ResNet-50(基础Base) | 96.29 | 25 892 262 | 16.08 |
ResNet-50(剪枝90%+学习率倒带Pruning 90%+learning rate rewinding) | 95.65 | 3 386 114 | 5.39 |
ResNet-50(剪枝90%+教师学习率倒带Pruning 90%+learning rate rewinding of teacher) | 96.52 | 3 386 114 | 5.39 |
ResNet-50(剪枝90%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 97.78 | 3 399 477 | 4.9 |
ResNet-26(基础Base) | 95.37 | 14 024 102 | 9.05 |
ResNet-26(剪枝70%+学习率倒带Pruning 70%+learning rate rewinding) | 91.23 | 3 256 645 | 3.93 |
ResNet-26(剪枝70%+教师学习率倒带Pruning 70%+learning rate rewinding of teacher) | 95.66 | 3 256 645 | 3.93 |
ResNet-26(剪枝70%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 97.29 | 3 570 393 | 4.52 |
ResNet-14(基础Base) | 91.54 | 8 090 022 | 5.54 |
ResNet-14(剪枝50%+学习率倒带Pruning 50%+learning rate rewinding) | 90.85 | 3 123 523 | 3.16 |
ResNet-14(剪枝50%+教师学习率倒带Pruning 50%+learning rate rewinding of teacher) | 91.32 | 3 123 523 | 3.16 |
ResNet-14(剪枝50%+助教学习率倒带Pruning 50%+learning rate rewinding of teacher assistant) | 96.35 | 3 533 589 | 3.65 |
MobileNetV2 | 90.90 | 2 272 550 | 0.32 |
表3 在New Plant Diseases Dataset上的实验结果
Table 3 Experimental results on New Plant Diseases Dataset
模型 Model | 准确率 Accuracy/% | 参数量 Params | 计算量 FLOPs/G |
---|---|---|---|
ResNet-50(基础Base) | 96.29 | 25 892 262 | 16.08 |
ResNet-50(剪枝90%+学习率倒带Pruning 90%+learning rate rewinding) | 95.65 | 3 386 114 | 5.39 |
ResNet-50(剪枝90%+教师学习率倒带Pruning 90%+learning rate rewinding of teacher) | 96.52 | 3 386 114 | 5.39 |
ResNet-50(剪枝90%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 97.78 | 3 399 477 | 4.9 |
ResNet-26(基础Base) | 95.37 | 14 024 102 | 9.05 |
ResNet-26(剪枝70%+学习率倒带Pruning 70%+learning rate rewinding) | 91.23 | 3 256 645 | 3.93 |
ResNet-26(剪枝70%+教师学习率倒带Pruning 70%+learning rate rewinding of teacher) | 95.66 | 3 256 645 | 3.93 |
ResNet-26(剪枝70%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 97.29 | 3 570 393 | 4.52 |
ResNet-14(基础Base) | 91.54 | 8 090 022 | 5.54 |
ResNet-14(剪枝50%+学习率倒带Pruning 50%+learning rate rewinding) | 90.85 | 3 123 523 | 3.16 |
ResNet-14(剪枝50%+教师学习率倒带Pruning 50%+learning rate rewinding of teacher) | 91.32 | 3 123 523 | 3.16 |
ResNet-14(剪枝50%+助教学习率倒带Pruning 50%+learning rate rewinding of teacher assistant) | 96.35 | 3 533 589 | 3.65 |
MobileNetV2 | 90.90 | 2 272 550 | 0.32 |
模型 Model | 准确率 Accuracy/% | 参数 Params | 计算量 FLOPs/G |
---|---|---|---|
ResNet-26(基础Base) | 87.09 | 13 956 485 | 9.05 |
ResNet-26(剪枝70%+学习率倒带Pruning 70%+learning rate rewinding) | 89.10 | 4 653 755 | 3.80 |
ResNet-26(剪枝70%+教师学习率倒带Pruning 70%+learning rate rewinding of teacher) | 89.32 | 4 653 755 | 3.80 |
ResNet-26(剪枝70%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 91.94 | 4 837 876 | 3.55 |
MobileNetV2 | 33.57 | 2 230 277 | 0.32 |
表4 在苹果叶病害数据集上的实验结果
Table 4 Experimental results on apple leaf disease dataset
模型 Model | 准确率 Accuracy/% | 参数 Params | 计算量 FLOPs/G |
---|---|---|---|
ResNet-26(基础Base) | 87.09 | 13 956 485 | 9.05 |
ResNet-26(剪枝70%+学习率倒带Pruning 70%+learning rate rewinding) | 89.10 | 4 653 755 | 3.80 |
ResNet-26(剪枝70%+教师学习率倒带Pruning 70%+learning rate rewinding of teacher) | 89.32 | 4 653 755 | 3.80 |
ResNet-26(剪枝70%+助教学习率倒带Pruning 90%+learning rate rewinding of teacher assistant) | 91.94 | 4 837 876 | 3.55 |
MobileNetV2 | 33.57 | 2 230 277 | 0.32 |
模型 Model | 剪枝前准确率 Accuracy before pruning | 剪枝后准确率 Accuracy after pruning |
---|---|---|
ResNet-56 | 89.51 | — |
(稀疏化Sparse) | ||
ResNet-56 | 89.51 | 89.54 |
(剪枝30% Pruning 30%) | ||
ResNet-56 | 89.43 | 91.41 |
(剪枝40% Pruning 40%) | ||
ResNet-56 | 14.09 | 91.31 |
(剪枝50% Pruning 50%) | ||
ResNet-56 | 10.00 | 90.19 |
(剪枝60% Pruning 60%) | ||
ResNet-50(稀疏化Sparse) | 83.57 | — |
ResNet-50 | 83.57 | 85.99 |
(剪枝50% Pruning 50%) | ||
ResNet-50 | 83.58 | 85.81 |
(剪枝60% Pruning 60%) | ||
ResNet-50 | 83.62 | 85.59 |
(剪枝70% Pruning 70%) | ||
ResNet-50 | 55.78 | 85.37 |
(剪枝80% Pruning 80%) |
表5 剪枝率对模型的影响
Table 5 Effect of pruning rate on models %
模型 Model | 剪枝前准确率 Accuracy before pruning | 剪枝后准确率 Accuracy after pruning |
---|---|---|
ResNet-56 | 89.51 | — |
(稀疏化Sparse) | ||
ResNet-56 | 89.51 | 89.54 |
(剪枝30% Pruning 30%) | ||
ResNet-56 | 89.43 | 91.41 |
(剪枝40% Pruning 40%) | ||
ResNet-56 | 14.09 | 91.31 |
(剪枝50% Pruning 50%) | ||
ResNet-56 | 10.00 | 90.19 |
(剪枝60% Pruning 60%) | ||
ResNet-50(稀疏化Sparse) | 83.57 | — |
ResNet-50 | 83.57 | 85.99 |
(剪枝50% Pruning 50%) | ||
ResNet-50 | 83.58 | 85.81 |
(剪枝60% Pruning 60%) | ||
ResNet-50 | 83.62 | 85.59 |
(剪枝70% Pruning 70%) | ||
ResNet-50 | 55.78 | 85.37 |
(剪枝80% Pruning 80%) |
图11 模型对各类病害的识别准确率 0,苹果疮痂病;1,苹果黑腐病;2,苹果锈病;3,健康苹果;4,健康草莓;5,樱桃白粉病;6,健康樱桃;7,玉米灰叶斑病;8,玉米锈病;9,玉米北方叶枯病;10,健康玉米;11,葡萄黑腐病;12,葡萄黑麻疹;13,葡萄叶枯病;14,健康葡萄;15,橘子黄龙病;16,桃菌斑;17,健康桃;18,胡椒铃菌斑;19,健康胡椒;20,马铃薯早疫病;21,马铃薯晚疫病;22,健康马铃薯;23,健康树莓;24,健康黄豆;25,南瓜白粉病;26,草莓叶焦病;27,健康草莓;28,番茄细菌斑;29,番茄早疫病;30,番茄晚疫病;31,番茄叶霉病;32,番茄叶斑病;33,番茄二斑叶螨病;34,番茄轮斑病;35,番茄黄曲叶病;36,番茄花叶病;37,健康番茄。下同。
Fig.11 Identification accuracy of ravious diseases by the proposed model 0, Apple scab; 1, Apple black rot; 2, Apple cedar rust; 3, Healty apple; 4, Healthy blueberry; 5, Cherry powdery mildew; 6, Healthy cherry; 7, Maize gray leaf spot; 8, Maize common rust; 9, Maize northern leaf blight; 10, Healthy maize; 11, Grape black rot; 12, Grape black measles; 13, Grape leaf blight; 14, Healthy grape; 15, Orange Huanglongbing; 16, Peach bacterial spot; 17, Healthy peach; 18, Pepper bacterial spot; 19, Healthy pepper; 20, Potato early blight; 21, Potato late blight; 22, Healthy potato; 23, Healthy raspberry; 24, Healthy soybean; 25, Squash powdery mildew; 26, Strawberry leaf scorch; 27, Healthy strawberry; 28, Tomato bacterial spot; 29, Tomato early bilght; 30, Tomato late blight; 31, Tomato leaf mold; 32, Tomato septoria leaf spot; 33, Tomato two-spotted spider mite; 34, Tomato target spot; 35, Tomato yellow leaf curl virus; 36, Tomato mosaic virus; 37, Healthy tomato. The same as below.
[1] | KAMILARIS A, PRENAFETA-BOLDU’ F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
[2] | 戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感可见光影像的北疆主要农作物分类方法[J]. 农业工程学报, 2018, 34(18): 122-129. |
DAI J G, ZHANG G S, GUO P, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 122-129. (in Chinese with English abstract) | |
[3] | 韩文霆, 郭聪聪, 张立元, 等. 基于无人机遥感的灌区土地利用与覆被分类方法[J]. 农业机械学报, 2016, 47(11): 270-277. |
HAN W T, GUO C C, ZHANG L Y, et al. Classification method of land cover and irrigated farm land use based on UAV remote sensing in irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 270-277. (in Chinese with English abstract) | |
[4] | NI C, WANG D Y, VINSON R, et al. Automatic inspection machine for maize kernels based on deep convolutional neural networks[J]. Biosystems Engineering, 2019, 178: 131-144. |
[5] | 陈进, 顾琰, 练毅, 等. 基于机器视觉的水稻杂质及破碎籽粒在线识别方法[J]. 农业工程学报, 2018, 34(13): 187-194. |
CHEN J, GU Y, LIAN Y, et al. Online recognition method of impurities and broken paddy grains based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 187-194. (in Chinese with English abstract) | |
[6] | 王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163. |
WANG D D, HE D J. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163. (in Chinese with English abstract) | |
[7] | OLANIYI E O, OYEDOTUN O K, ADNAN K. Intelligent grading system for banana fruit using neural network arbitration[J]. Journal of Food Process Engineering, 2017, 40(1): e12335. |
[8] | MA J C, DU K M, ZHENG F X, et al. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network[J]. Computers and Electronics in Agriculture, 2018, 154: 18-24. |
[9] | 谢忠红, 徐焕良, 黄秋桂, 等. 基于高光谱图像和深度学习的菠菜新鲜度检测[J]. 农业工程学报, 2019, 35(13): 277-284. |
XIE Z H, XU H L, HUANG Q G, et al. Spinach freshness detection based on hyperspectral image and deep learning method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 277-284. (in Chinese with English abstract) | |
[10] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171. |
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract) | |
[11] | 杨森, 冯全, 张建华, 等. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29. |
YANG S, FENG Q, ZHANG J H, et al. Identification method for potato disease based on deep learning and composite dictionary[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 22-29. (in Chinese with English abstract) | |
[12] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[13] | 刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74. |
LIU A Y, WU Y Z, ZHU X N, et al. Corn disease recognition based on deep residual network[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1): 67-74. (in Chinese with English abstract) | |
[14] | 孔建磊, 金学波, 陶治, 等. 基于多流高斯概率融合网络的病虫害细粒度识别[J]. 农业工程学报, 2020, 36(13): 148-157. |
KONG J L, JIN X B, TAO Z, et al. Fine-grained recognition of diseases and pests based on multi-stream Gaussian probability fusion network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 148-157. (in Chinese with English abstract) | |
[15] | YE J B, LU X, LIN Z, et al. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers[EB/OL].[2022-08-14]. https://arxiv.org/abs/1802.00124. |
[16] | LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[EB/OL]. (2016-08-31) [2022-08-14]. https://arxiv.org/abs/1608.08710. |
[17] | CHANGPINYO S, SANDLER M, ZHMOGINOV A. The power of sparsity in convolutional neural networks[EB/OL]. (2017-02-21) [2022-08-14]. https://arxiv.org/abs/1702.06257. |
[18] | WEN W, WU C P, WANG Y D, et al. Learning structured sparsity in deep neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. December 5-10, 2016, Barcelona: ACM, 2016: 2082-2090. |
[19] | LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice: IEEE, 2017: 2755-2763. |
[20] | BUCILUǍ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C]// Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. August 20-23, 2006, Philadelphia, PA, USA: ACM, 2006: 535-541. |
[21] | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2022-08-14]. https://arxiv.org/abs/1503.02531. |
[22] | BA L J, CARUANA R. Do deep nets really need to be deep? [EB/OL]. (2013-12-21)[2022-08-14]. https://arxiv.org/abs/1312.6184. |
[23] | ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. (2014-12-19) [2022-08-14]. https://arxiv.org/abs/1412.6550. |
[24] | CZARNECKI W M, OSINDERO S, JADERBERG M, et al. So-bolev training for neural networks[C]// VON LUXBURGU, GUYOUI, BENGIOS, et al. Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017: 4281-4290. |
[25] | HE T, SHEN C H, TIAN Z, et al. Knowledge adaptation for efficient semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA: IEEE, 2020: 578-587. |
[26] | MIRZADEH S I, FARAJTABAR M, LI A, et al. Improved knowledge distillation via teacher assistant[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5191-5198. |
[27] | RENDA A, FRANKLE J, CARBIN M. Comparing rewinding and fine-tuning in neural network pruning[EB/OL]. (2020-03-05) [2022-08-14]. https://arxiv.org/abs/2003.02389. |
[28] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-02-11) [2022-08-14]. https://arxiv.org/abs/1502.03167. |
[29] | FRANKLE J, DZIUGAITE G K, ROY D M, et al. Linear mode connectivity and the lottery ticket hypothesis[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 3259-3269. |
[1] | 朱冬琴, 冯全, 张建华. 基于剪枝的植物病害识别方法[J]. 浙江农业学报, 2023, 35(6): 1462-1472. |
[2] | 张宁, 吴华瑞, 韩笑, 缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338. |
[3] | 张善文, 黄文准, 尤著宏. 基于物联网和深度卷积神经网络的冬枣病害识别方法[J]. 浙江农业学报, 2017, 29(11): 1868-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||