浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 901-908.DOI: 10.3969/j.issn.1004-1524.20240786
陆南洋1,2(), 赵婷蕾1,2, 周瑛2, 姚燕来1, 李鹏昊1, 洪春来1, 朱为静1, 洪磊东1, 张涛1, 朱凤香1,*(
)
收稿日期:
2024-09-06
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
陆南洋(1996—),女,浙江绍兴人,博士研究生,主要从事固体废弃物资源化利用研究。E-mail:794344045@qq.com
通讯作者:
*朱凤香,E-mail:zfx76@aliyun.com
基金资助:
LU Nanyang1,2(), ZHAO Tinglei1,2, ZHOU Ying2, YAO Yanlai1, LI Penghao1, HONG Chunlai1, ZHU Weijing1, HONG Leidong1, ZHANG Tao1, ZHU Fengxiang1,*(
)
Received:
2024-09-06
Online:
2025-04-25
Published:
2025-05-09
摘要:
为实现赤霉素发酵滤渣的高值化利用,本研究全面评估了猪粪与赤霉素发酵滤渣在不同配比、接种量和pH值条件下对丝光绿蝇幼虫转化效率的影响。结果表明,调节初始赤霉素发酵滤渣的pH值至6.0,将猪粪与赤霉素发酵滤渣按照80%∶20%(质量分数,下同)、60%∶40%、40%∶60%的比例混合能显著提升幼虫的转化率分别至14.29%、13.34%和11.57%。将猪粪与赤霉素发酵滤渣按3∶2的质量比混合,接种量为3.0%~7.5%时,幼虫转化率为10.48%~15.02%,综合蝇蛆产量和成本,以3.0%的接种量较为合适。当猪粪与赤霉素发酵滤渣以3∶2的质量比混合时,混合物料的pH值以6.5~7.5为佳。综上,通过调控猪粪与赤霉素发酵滤渣的配比、接种量和pH值,可以提高蝇蛆的转化效率,提升赤霉素发酵滤渣处理的附加值。
中图分类号:
陆南洋, 赵婷蕾, 周瑛, 姚燕来, 李鹏昊, 洪春来, 朱为静, 洪磊东, 张涛, 朱凤香. 蝇蛆转化赤霉素发酵滤渣的工艺研究[J]. 浙江农业学报, 2025, 37(4): 901-908.
LU Nanyang, ZHAO Tinglei, ZHOU Ying, YAO Yanlai, LI Penghao, HONG Chunlai, ZHU Weijing, HONG Leidong, ZHANG Tao, ZHU Fengxiang. Study on bioconversion process of gibberellin fermentation residue with fly maggots (Lucilia sericata)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 901-908.
处理 Treatment | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
A | 73.61±0.84 a | 61.81±0.57 a | 6.71±0.02 a | 9.17±0.01 a | 9.46±0.09 a | 2.93±0.04 d |
B | 72.36±0.59 b | 60.87±0.31 a | 6.27±0.02 b | 8.99±0.02 b | 7.98±0.07 b | 3.03±0.02 bc |
C | 71.10±0.37 c | 57.96±3.14 b | 5.83±0.02 c | 8.56±0.02 c | 6.49±0.05 c | 3.00±0.04 cd |
D | 69.85±0.24 d | 49.24±0.54 c | 5.39±0.03 d | 8.18±0.12 d | 5.01±0.04 d | 3.12±0.08 ab |
E | 68.60±0.33 e | 50.82±0.58 c | 4.95±0.03 e | 7.82±0.02 e | 3.52±0.02 e | 2.78±0.08 e |
F | 67.34±0.54 f | 51.03±0.73 c | 4.51±0.04 f | 7.87±0.05 e | 2.04±0.02 f | 3.19±0.02 a |
表1 不调节赤霉素发酵滤渣pH时猪粪和赤霉素发酵滤渣以不同比例混合生物转化前后的含水率、pH值和电导率
Table 1 Moisture content, pH value and electrical conductivity of mixture with varied ratios of pig manure and gibberellin fermentation residue before and after bioconversion without pH adjustment of gibberellin fermentation residue
处理 Treatment | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
A | 73.61±0.84 a | 61.81±0.57 a | 6.71±0.02 a | 9.17±0.01 a | 9.46±0.09 a | 2.93±0.04 d |
B | 72.36±0.59 b | 60.87±0.31 a | 6.27±0.02 b | 8.99±0.02 b | 7.98±0.07 b | 3.03±0.02 bc |
C | 71.10±0.37 c | 57.96±3.14 b | 5.83±0.02 c | 8.56±0.02 c | 6.49±0.05 c | 3.00±0.04 cd |
D | 69.85±0.24 d | 49.24±0.54 c | 5.39±0.03 d | 8.18±0.12 d | 5.01±0.04 d | 3.12±0.08 ab |
E | 68.60±0.33 e | 50.82±0.58 c | 4.95±0.03 e | 7.82±0.02 e | 3.52±0.02 e | 2.78±0.08 e |
F | 67.34±0.54 f | 51.03±0.73 c | 4.51±0.04 f | 7.87±0.05 e | 2.04±0.02 f | 3.19±0.02 a |
处理 Treatment | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
A | 78.93±1.06 a | 66.56±0.84 a | 6.42±0.09 a | 8.62±0.05 ab | 1.14±0.04 d | 1.32±0.04 e |
B | 73.84±0.40 b | 62.26±0.71 b | 6.16±0.04 ab | 8.44±0.04 abc | 2.02±0.05 c | 1.75±0.01 d |
C | 72.70±0.25 bc | 57.61±1.06 c | 5.70±0.22 c | 8.69±0.01 a | 2.27±0.04 b | 2.88±0.07 c |
D | 72.21±0.44 c | 47.91±0.03 e | 5.69±0.11 c | 8.41±0.05 bc | 2.36±0.06 b | 3.29±0.03 b |
E | 71.86±0.84 c | 50.89±0.76 de | 5.75±0.51 bc | 7.69±0.31 d | 2.61±0.24 a | 3.74±0.15 a |
F | 70.09±0.90 d | 52.35±4.40 d | 5.44±0.29 c | 8.28±0.08 c | 2.69±0.03 a | 3.20±0.02 b |
表2 调节赤霉素发酵滤渣pH时猪粪和赤霉素发酵滤渣以不同比例混合生物转化前后的含水率、pH值和电导率
Table 2 Moisture content, pH value and electrical conductivity of mixture with varied ratios of pig manure and gibberellin fermentation residue before and after bioconversion with pH adjustment of gibberellin fermentation residue
处理 Treatment | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
A | 78.93±1.06 a | 66.56±0.84 a | 6.42±0.09 a | 8.62±0.05 ab | 1.14±0.04 d | 1.32±0.04 e |
B | 73.84±0.40 b | 62.26±0.71 b | 6.16±0.04 ab | 8.44±0.04 abc | 2.02±0.05 c | 1.75±0.01 d |
C | 72.70±0.25 bc | 57.61±1.06 c | 5.70±0.22 c | 8.69±0.01 a | 2.27±0.04 b | 2.88±0.07 c |
D | 72.21±0.44 c | 47.91±0.03 e | 5.69±0.11 c | 8.41±0.05 bc | 2.36±0.06 b | 3.29±0.03 b |
E | 71.86±0.84 c | 50.89±0.76 de | 5.75±0.51 bc | 7.69±0.31 d | 2.61±0.24 a | 3.74±0.15 a |
F | 70.09±0.90 d | 52.35±4.40 d | 5.44±0.29 c | 8.28±0.08 c | 2.69±0.03 a | 3.20±0.02 b |
图1 不调节赤霉素发酵滤渣pH时猪粪和赤霉素发酵滤渣以不同比例混合对蝇蛆转化的影响 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effect of mixture with varied ratios of pig manure and gibberellin fermentation residue on bioconversion of maggots without pH adjustment of gibberellin fermentation residue Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
图2 调节赤霉素发酵滤渣pH时猪粪和赤霉素发酵滤渣以不同比例混合对蝇蛆转化的影响
Fig.2 Effect of mixture with varied ratios of pig manure and gibberellin fermentation residue on bioconversion of maggots with pH adjustment of gibberellin fermentation residue
接种量 Inoculum amount/% | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|
1.5 | 61.35±1.52 a | 7.42±0.13 c | 3.78±0.04 c |
3.0 | 50.48±2.21 b | 8.33±0.02 b | 3.96±0.11 ab |
4.5 | 48.12±0.69 b | 8.40±0.07 ab | 4.07±0.09 a |
6.0 | 47.97±1.61 b | 8.41±0.04 ab | 4.04±0.10 a |
7.5 | 48.85±0.15 b | 8.46±0.02 a | 3.81±0.10 bc |
表3 接种量对物料含水率、pH值和电导率的影响
Table 3 Effect of inoculum amounts on moisture content, pH and electrical conductivity of mixtures
接种量 Inoculum amount/% | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|
1.5 | 61.35±1.52 a | 7.42±0.13 c | 3.78±0.04 c |
3.0 | 50.48±2.21 b | 8.33±0.02 b | 3.96±0.11 ab |
4.5 | 48.12±0.69 b | 8.40±0.07 ab | 4.07±0.09 a |
6.0 | 47.97±1.61 b | 8.41±0.04 ab | 4.04±0.10 a |
7.5 | 48.85±0.15 b | 8.46±0.02 a | 3.81±0.10 bc |
pH | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
5.5 | 74.13±0.72 a | 59.59±0.67 a | 5.5 | 7.17±0.10 c | 2.58±0.05 a | 5.22±0.09 a |
6.0 | 74.32±0.24 a | 59.68±0.98 a | 6.0 | 7.25±0.09 bc | 2.35±0.08 b | 4.63±0.12 b |
6.5 | 74.01±0.40 a | 57.46±2.02 a | 6.5 | 7.46±0.21 b | 2.24±0.10 bc | 4.11±0.12 c |
7.0 | 74.50±0.36 a | 57.49±2.24 a | 7.0 | 7.98±0.07 a | 2.16±0.05 cd | 2.98±0.19 d |
7.5 | 74.40±0.30 a | 58.82±0.96 a | 7.5 | 7.93±0.05 a | 2.09±0.05 d | 2.62±0.03 e |
表4 pH值对物料生物转化前后含水率、pH值和电导率的影响
Table 4 Effect of pH on moisture content, pH value and electrical conductivity of the mixture of pig manure and gibberellin fermentation residue with varied initial pH values
pH | 含水率 Moisture content/% | pH | 电导率 Electrical conductivity/(mS·cm-1) | |||
---|---|---|---|---|---|---|
转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | 转化前 Before bioconversion | 转化后 After bioconversion | |
5.5 | 74.13±0.72 a | 59.59±0.67 a | 5.5 | 7.17±0.10 c | 2.58±0.05 a | 5.22±0.09 a |
6.0 | 74.32±0.24 a | 59.68±0.98 a | 6.0 | 7.25±0.09 bc | 2.35±0.08 b | 4.63±0.12 b |
6.5 | 74.01±0.40 a | 57.46±2.02 a | 6.5 | 7.46±0.21 b | 2.24±0.10 bc | 4.11±0.12 c |
7.0 | 74.50±0.36 a | 57.49±2.24 a | 7.0 | 7.98±0.07 a | 2.16±0.05 cd | 2.98±0.19 d |
7.5 | 74.40±0.30 a | 58.82±0.96 a | 7.5 | 7.93±0.05 a | 2.09±0.05 d | 2.62±0.03 e |
[1] | 廖霏霏, 刘兴贵, 王克秀, 等. 赤霉素和叶面肥对马铃薯原原种雾化生产的影响[J]. 农学学报, 2022, 12(4): 18-23. |
LIAO F F, LIU X G, WANG K X, et al. Gibberellin and foliar fertilizer: effects on pre-basic seeds of potato production by aeroponics[J]. Journal of Agriculture, 2022, 12(4): 18-23. (in Chinese with English abstract) | |
[2] | 王金强, 李欢, 刘庆, 等. 干旱胁迫下喷施外源植物激素对甘薯生理特性和产量的影响[J]. 应用生态学报, 2020, 31(1): 189-198. |
WANG J Q, LI H, LIU Q, et al. Effects of exogenous plant hormones on physiological characteristics and yield of sweet potato under drought stress[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 189-198. (in Chinese with English abstract) | |
[3] | YAO Y L, ZHU F X, HONG C L, et al. Utilization of gibberellin fermentation residues with swine manure by two-step composting mediated by housefly maggot bioconversion[J]. Waste Management, 2020, 105: 339-346. |
[4] | WANG Q, LI R H, CAI H Z, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161. |
[5] | 薛智勇, 王卫平, 朱凤香, 等. 复合菌剂和不同调理剂对猪粪发酵温度及腐熟度的影响[J]. 浙江农业学报, 2005, 17(6): 354-358. |
XUE Z Y, WANG W P, ZHU F X, et al. Effects of complex lively bacterial preparation and different attendant material on the fermation temperature and maturity in pig manure[J]. Acta Agriculturae Zhejiangensis, 2005, 17(6): 354-358. (in Chinese with English abstract) | |
[6] | 汪开英, 朱凤香, 王卫平, 等. 不同辅料生物菌剂堆肥发酵层温度变化[J]. 农业工程学报, 2006, 22(1): 186-188. |
WANG K Y, ZHU F X, WANG W P, et al. Variations of layer temperature during pig manure composting with different amendments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(1): 186-188. (in Chinese with English abstract) | |
[7] | ZHU F X, WANG W P, HONG C L, et al. Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure[J]. Bioresource Technology, 2012, 116: 485-491. |
[8] | 江承亮, 腾昌运, 李敬, 等. 蝇蛆生物转化餐厨垃圾的效能评估[J]. 应用与环境生物学报, 2017, 23(6): 1159-1165. |
JIANG C L, TENG C Y, LI J, et al. The effectiveness of bioconversion of food waste by housefly larvae[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 1159-1165. (in Chinese with English abstract) | |
[9] | 史东晓, 徐刚, 丁泉, 等. 利用餐厨残渣养殖蝇蛆中试研究[J]. 环境卫生工程, 2020, 28(4): 22-26. |
SHI D X, XU G, DING Q, et al. A pilot-scale study on breeding fly maggots using kitchen residues[J]. Environmental Sanitation Engineering, 2020, 28(4): 22-26. (in Chinese with English abstract) | |
[10] | KINKELA P M, BWABWA D, MUTIAKA B K, et al. Optimization of housefly larvae production on pig wastes and brewers’ grains for integrated fish and pig farms in the tropics[J]. Livestock Research for Rural Development, 2019, 31(2): 1-10. |
[11] | 胡清泉, 沙茜, 鲍晓伟, 等. 黑水虻幼虫处理猪粪的应用成效研究[J]. 家畜生态学报, 2024, 45(3): 81-87. |
HU Q Q, SHA Q, BAO X W, et al. The application effect of swine manure treatment with black soldier fly larvae[J]. Journal of Domestic Animal Ecology, 2024, 45(3): 81-87. (in Chinese with English abstract) | |
[12] | ZHU F X, YAO Y L, WANG S J, et al. Housefly maggot-treated composting as sustainable option for pig manure management[J]. Waste Management, 2015, 35: 62-67. |
[13] | 蒋亮, 何俊. 利用3种曲线模型拟合蝇蛆体质量的生长曲线[J]. 湖南农业大学学报(自然科学版), 2021, 47(5): 587-590. |
JIANG L, HE J. Using three curve models to fit the growth curve of fly maggot[J]. Journal of Hunan Agricultural University(Natural Sciences), 2021, 47(5): 587-590. (in Chinese with English abstract) | |
[14] | 姚玉梅, 王兆文, 张琦峰, 等. 蝇蛆生物转化餐厨残渣对产物特性的影响[J]. 农业工程学报, 2023, 39(9): 217-224. |
YAO Y M, WANG Z W, ZHANG Q F, et al. Effects of bioconversion of kitchen wastes using fly maggots on product properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 217-224. (in Chinese with English abstract) | |
[15] | 陈继发. 蝇蛆的营养特性及其在畜禽生产中的应用研究进展[J]. 动物营养学报, 2020, 32(4): 1484-1490. |
CHEN J F. Nutritional characteristic of fly maggot and its application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1484-1490. (in Chinese with English abstract) | |
[16] | 严善, 春魏婧, 刘宽余, 等. 丝光绿蝇的营养成分分析[J]. 中国造纸学报, 2004(增刊):356-358. |
YAN S, CHUN W J, LIU K Y, et al. Nutrient composition analysis of mercerized green flies[J]. Transactions of China Pulp and Paper, 2004(Suppl.): 356-358. | |
[17] | ZHU F X, HONG C L, WANG W P, et al. A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation[J]. Journal of Cleaner Production, 2020, 270: 122373. |
[18] | 史东晓, 张乐乐, 张小仙, 等. 蝇蛆生物转化厨余残渣过程中的除臭方法研究[J]. 环境卫生工程, 2022, 30(1): 65-70. |
SHI D X, ZHANG L L, ZHANG X X, et al. Study on deodorization methods in the process of fly maggot bioconversion of kitchen waste residue[J]. Environmental Sanitation Engineering, 2022, 30(1): 65-70. (in Chinese with English abstract) | |
[19] | 张文娟. 重金属在猪粪—蝇蛆—肉鸡食物链上的转移和积累[D]. 武汉: 华中农业大学, 2016. |
ZHANG W J. Mobility and bioaccumulation of heavy metal along manure-maggot-broiler food chain[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[20] | 王小波, 蔡瑞婕, 耿维娜, 等. 黑水虻生物转化猪粪过程中重金属的迁移变化[J]. 农业工程学报, 2020, 36(20): 263-268. |
WANG X B, CAI R J, GENG W N, et al. Migration and changes of heavy metals during biotransformation of pig manure by black soldier fly[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 263-268. (in Chinese with English abstract) | |
[21] | XU H J, HONG C L, YAO Y L, et al. The process of biotransformation can produce insect protein and promote the effective inactivation of heavy metals[J]. Science of the Total Environment, 2021, 776: 145864. |
[22] | 校亮, 李佳娣, 钟春婷, 等. 外源酶和辣椒素对黑水虻处理厨余垃圾效率及幼虫生长的影响[J]. 农业工程学报, 2022, 38(14): 250-255. |
XIAO L, LI J D, ZHONG C T, et al. Effects of exogenous enzymes and capsaicin on food waste treatment and larval growth of black soldier fly[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 250-255. (in Chinese with English abstract) | |
[23] | 蒋亮, 何俊. 不同饲养条件对蝇蛆生长发育及蛹虫繁殖性能的影响[J]. 经济动物学报, 2021, 25(4): 256-263. |
JIANG L, HE J. Effects of different feeding conditions on growth and development of maggots and reproductive performance of pupae[J]. Journal of Economic Animal, 2021, 25(4): 256-263. (in Chinese with English abstract) |
[1] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
[2] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[3] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
[4] | 俞洁雅, 倪梦萍, 丁良长, 胡洲铭, 肖建中, 郑强. 一株猪粪降解菌的筛选、评价及鉴定[J]. 浙江农业学报, 2020, 32(4): 586-592. |
[5] | 黄健, 肖建中, 唐世刚, 郑强, 丁枫华, 张东旭. 添加蒙脱石对猪粪好氧堆肥腐熟度和重金属钝化的影响[J]. 浙江农业学报, 2020, 32(1): 141-148. |
[6] | 朱国华;沈忠明;滕明益;陈文海;金国林;钱逸凡;*. 猪粪不同施加年限对水稻土磷积累的影响[J]. , 2013, 25(3): 0-613. |
[7] | 陈若霞;金树权;*;周金波;林斌;王耀德. 生活污泥猪粪混合好氧堆肥技术研究[J]. , 2012, 24(3): 0-489. |
[8] | 王卫平;朱凤香;陈晓旸;吴传珍;洪春来. 添加砻糠对猪粪堆肥发酵层温度及氮素变化的影响[J]. , 2009, 21(6): 0-582. |
[9] | 付天杭;倪丹华;徐芳杰;章永松;林咸永;*. 模拟酸雨对施用猪粪的菜园土壤重金属有效性的影响 [J]. , 2009, 21(6): 0-598. |
[10] | 董占荣;陈一定;林咸永;章永松;倪丹华. 杭州市郊规模化养殖场猪粪的重金属含量及其形态[J]. , 2008, 20(1): 0-39. |
[11] | 沈立荣;李红艳;冯凤琴;顾松;黄笑丹;马晓钟. 35种植物精油对腌肉咸鲞害虫丝光绿蝇的杀卵作用[J]. , 2007, 19(4): 0-288. |
[12] | 薛智勇;王卫平;朱凤香;钱红;吴传珍 . 复合菌剂和不同调理剂对猪粪发酵温度及腐熟度的影响[J]. , 2005, 17(6): 0-358. |
[13] | 罗安程;史彩芬;孙晓华;周焱;仇丹. 猪粪堆肥发酵过程中磷组分的转化[J]. , 2005, 17(5): 0-299. |
[14] | 王卫平;朱凤香;钱红;吴传珍;薛智勇 . 接种发酵菌剂和添加不同调理剂对猪粪发酵堆肥氮素变化的影响[J]. , 2005, 17(5): 0-279. |
[15] | 叶继术;方哲红;汪志平;吴次芳. 猪粪培育钝顶螺旋藻(Spirulina platensis)株系Sp-J(M)的研究[J]. , 2002, 14(4): 0-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||