›› 2011, Vol. 23 ›› Issue (4): 0-832.
• 生物系统工程 •
何建斌,梁威,李晓明
收稿日期:
修回日期:
出版日期:
发布日期:
HE Jian-bin;LIANG Wei;LI -ming
Received:
Revised:
Online:
Published:
摘要: 对小麦植株图像进行分割,是将机器视觉技术应用到动态监测小麦生长状况的基础。采用K均值聚类和数学形态学相结合的方法进行分割,充分利用了小麦植株颜色和背景颜色的差异。首先根据图像色彩对图像进行聚类,然后对聚类后的图像进行形态学开运算,实现了小麦植株与背景的分离,并达到了较好的效果。
关键词: K均值聚类, 数学形态学, Lab色彩空间
Abstract: Wheat image segmentation is the basic work of applying computer vision technology to dynamic monitoring wheat growing. This paper proposed an algorithm combining K-means clustering and mathematical morphology which full use of the color differences between wheat plant and background in the image. Firstly, clustering image based on colors, and then mathematical morphology opening operation was used to eliminate noise. Experiment results showed that the algorithm was effective in segmenting wheat color images.
Key words: K-means clustering, mathematical morphology, Lab color space
何建斌;梁威;李晓明. 基于K均值聚类和数学形态学的小麦彩色图像分割[J]. , 2011, 23(4): 0-832.
HE Jian-bin;LIANG Wei;LI -ming. The color image segmentation of wheat based on K-means clustering and mathematical morphology[J]. , 2011, 23(4): 0-832.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.zjnyxb.cn/CN/
http://www.zjnyxb.cn/CN/Y2011/V23/I4/0