›› 2011, Vol. 23 ›› Issue (5): 0-1016.

• 食品科学 •    

BP神经网络模型在香菇中SO2含量分析中的应用

王伟1,张玉1,吴应淼2,徐丽红1,王建清1   

  1. 1 浙江省农业科学院 农产品质量标准研究所, 浙江 杭州 310021;2浙江省庆元县食用菌科学技术研究中心, 浙江 庆元,323800
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-25 发布日期:2011-09-25

Application of sulfur dioxide content detection in mushrooms based on the back-propagation neural networks

WANG Wei;ZHANG Yu;WU Ying-miao;XU Li-hong;WANG Jian-qing   

  1. 1 Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 2Qingyuan Research Centre of Mushroom Science and Technology, Qingyuan 323800, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-25 Published:2011-09-25

摘要:

以‘庆元9015’香菇作为研究对象,以香菇样品的生长天数(d)和样品中总SO2-3含量、鲜香菇样品的SO2含量和采摘期的出菇时间(d)为输入层参数,以干香菇中SO2含量为输出层参数,建立三层BP神经网络模型,经过356次训练后模型收敛,模型具有满意的预测能力。

关键词: 人工神经网络, 香菇, 二氧化硫

Abstract:

A three-layer BP network model was constructed with Qingyuan 9015 as the experimental material, and the mushroom growth days and the SO2-3 content in mushrooms, the SO2 content in fresh mushroom samples and the mushroom producing time (days) in picking period were used as the four input parameters, and the SO2 content in dried mushroom was used as output parameter. After 356 times of training process, the model converged with satisfying predictive ability.

Key words: artificial neural networks, mushroom, SO2