浙江农业学报 ›› 2021, Vol. 33 ›› Issue (1): 43-51.DOI: 10.3969/j.issn.1004-1524.2021.01.06
唐标1a,1b(), 常江1a,1b,2, 胡骥1b, 钱鸣蓉1a,1b, 夏效东3, 杨华1a,1b,*(
)
收稿日期:
2020-07-31
出版日期:
2021-01-25
发布日期:
2021-01-25
通讯作者:
杨华
作者简介:
*杨华,E-mail:yanghua@zaas.ac.cn基金资助:
TANG Biao1a,1b(), CHANG Jiang1a,1b,2, HU Ji1b, QIAN Mingrong1a,1b, XIA Xiaodong3, YANG Hua1a,1b,*(
)
Received:
2020-07-31
Online:
2021-01-25
Published:
2021-01-25
Contact:
YANG Hua
摘要:
黏菌素是治疗碳青霉烯类耐药菌感染的最后一线药物。然而,近年来在许多致病菌中发现质粒介导的黏菌素耐药基因mcr传播,降低了黏菌素的有效性,对公众健康构成了威胁。为探讨可能影响黏菌素耐药性传播的质粒特征,基于mcr质粒的完成图,共分析了2015—2018年GenBank收录的103个携带mcr的完整质粒序列。结果表明:质粒主要来源于中国,大肠埃希菌为主要携带者;IncI2和IncX4是最主要的复制子类型,IncHI2是携带有多个耐药基因质粒的优势复制子类型;sul3、aadA1与mcr基因在质粒中共存的概率最高。另外还发现,95.14%的质粒含有抗消毒剂或重金属抗性基因。除ISApl1外,IS26插入序列出现频率最高。18.45%的质粒具有接合转移元件,包括oriT、松弛酶(relaxase)、T4CP和T4SS。本文重点指出了耐药基因交叉抗性和重金属的共选择作用,为更好地控制黏菌素耐药性提供了思路。
中图分类号:
唐标, 常江, 胡骥, 钱鸣蓉, 夏效东, 杨华. 103个mcr质粒的结构与特征[J]. 浙江农业学报, 2021, 33(1): 43-51.
TANG Biao, CHANG Jiang, HU Ji, QIAN Mingrong, XIA Xiaodong, YANG Hua. Structures and characteristics of 103 plasmids carrying mcr gene[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 43-51.
[1] |
PRESTINACI F, PEZZOTTI P, PANTOSTI A. Antimicrobial resistance: a global multifaceted phenomenon[J]. Pathogens and Global Health, 2015,109(7):309-318.
DOI URL PMID |
[2] |
BAKER S, THOMSON N, WEILL F X, et al. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens[J]. Science, 2018,360(6390):733-738.
DOI URL PMID |
[3] |
VAN BOECKEL T P, PIRES J, SILVESTER R, et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries[J]. Science, 2019, 365(6459): eaaw1944.
URL PMID |
[4] | VAN DUIN D, DOI Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae[J]. Virulence, 2017, 8(4): 460-469. |
[5] |
PAPP-WALLACE K M, ENDIMIANI A, TARACILA M A, et al. Carbapenems: past, present, and future[J]. Antimicrobial Agents and Chemotherapy, 2011,55(11):4943-4960.
URL PMID |
[6] |
KOPOTSA K, OSEI SEKYERE J, MBELLE N M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review[J]. Annals of the New York Academy of Sciences, 2019,1457(1):61-91.
URL PMID |
[7] | BERGER R E. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study[J]. The Journal of Urology, 2011,185(1):154. |
[8] |
LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. The Lancet Infectious Diseases, 2016,16(2):161-168.
DOI URL PMID |
[9] |
RUPPÉ E, LE CHATELIER E, PONS N, et al. Dissemination of the mcr-1 colistin resistance gene[J]. The Lancet Infectious Diseases, 2016,16(3):290-291.
URL PMID |
[10] | TANG B, CHANG J, ZHANG L, et al. Carriage of distinct mcr-1-harboring plasmids by unusual serotypes of Salmonella[J]. Advanced Biosystems, 2020,4(3):1900219. |
[11] |
ZURFLUH K, STEVENS M J A, BUCHER M, et al. Full genome sequence of pT3, a multiresistant plasmid carrying the mcr-3.5 colistin resistance gene, recovered from an extended-spectrum-β-lactamase-producing Escherichia coli isolate from crickets sold as food[J]. Microbiology Resource Announcements, 2019,8(29):e00647-19.
DOI URL PMID |
[12] |
ZHENG B W, FENG Y J. MCR-1-producing Salmonella Typhimurium ST34 links animal foods to human community infections[J]. EBioMedicine, 2019,42:10-11.
URL PMID |
[13] |
ZHANG R, HU Y Y, ZHOU H W, et al. Emergence of mcr-1 and the tet(A) variant in a Klebsiella pneumoniae isolate from the faeces of a healthy person[J]. Journal of Medical Microbiology, 2019,68(9):1267-1268.
DOI URL PMID |
[14] |
ZHANG H M, ZONG Z Y, LEI S, et al. A genomic, evolutionary, and mechanistic study of MCR-5 action suggests functional unification across the MCR family of colistin resistance[J]. Advanced Science, 2019,6(11):1900034.
DOI URL PMID |
[15] |
CHAVDA B, LV J, HOU M Y, et al. Coidentification of mcr-4.3 and blaNDM-1 in a clinical Enterobacter cloacae isolate from China[J]. Antimicrobial Agents and Chemotherapy, 2018,62(10):e00649-18.
URL PMID |
[16] |
LIU B T, SONG F J, ZOU M, et al. Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal[J]. Antimicrobial Agents and Chemotherapy, 2017,61(2):e01444-16.
DOI URL PMID |
[17] |
WANG R, VAN DORP L, SHAW L, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1[J]. Nature communications, 2018,9(1):1179.
DOI URL PMID |
[18] |
WANG Y, TIAN G B, ZHANG R, et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study[J]. The Lancet Infectious Diseases, 2017,17(4):390-399.
DOI URL PMID |
[19] |
WANG Y, XU C Y, ZHANG R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. The Lancet Infectious Diseases, 2020,20(10):1161-1171.
DOI URL PMID |
[20] |
DONÀ V, BERNASCONI O J, PIRES J, et al. Heterogeneous genetic location of mcr-1 in colistin-resistant Escherichia coli isolates from humans and retail chicken meat in Switzerland: emergence of mcr-1-carrying IncK2 plasmids[J]. Antimicrobial Agents and Chemotherapy, 2017,61(11):e01245-17.
DOI URL PMID |
[21] |
MALHOTRA-KUMAR S, XAVIER B B, DAS A J, et al. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam[J]. The Lancet Infectious Diseases, 2016,16(3):286-287.
DOI URL PMID |
[22] |
WANG Q J, SUN J, LI J, et al. Expanding landscapes of the diversified mcr-1-bearing plasmid reservoirs[J]. Microbiome, 2017,5(1):70.
DOI URL PMID |
[23] | SHEN Z Q, HU Y Y, SUN Q L, et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study[J]. EClinicalMedicine, 2018(6):11-20. |
[24] |
BAI F J, LI X B, NIU B, et al. A mcr-1-carrying conjugative IncX4 plasmid in colistin-resistant Escherichia coli ST278 strain isolated from dairy cow feces in Shanghai, China[J]. Frontiers in Microbiology, 2018,9:2833.
DOI URL PMID |
[25] |
AGEEVETS V, LAZAREVA I, MRUGOVA T, et al. IncX4 plasmids harbouring mcr-1 genes: further dissemination[J]. Journal of Global Antimicrobial Resistance, 2019,18:166-167.
DOI URL PMID |
[26] |
HUANG X Z, FRYE J G, CHAHINE M A, et al. Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq[J]. PLoS One, 2012,7(7):e40360.
DOI URL PMID |
[27] | KLEINHEINZ K A, JOENSEN K G, LARSEN M V. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences[J]. Bacteriophage, 2014,4(2):e27943. |
[28] |
HE T, WEI R C, ZHANG L L, et al. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows[J]. Veterinary Microbiology, 2017,207:153-158.
DOI URL PMID |
[29] |
MCGANN P, SNESRUD E, MAYBANK R, et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States[J]. Antimicrobial Agents and Chemotherapy, 2016,60(7):4420-4421.
DOI URL PMID |
[30] |
LI R C, XIE M M, ZHANG J F, et al. Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant[J]. The Journal of Antimicrobial Chemotherapy, 2017,72(2):393-401.
URL PMID |
[31] | PAL C, BENGTSSON-PALME J, RENSING C, et al. BacMet: antibacterial biocide and metal resistance genes database[J]. Nucleic Acids Research, 2014,42(D1):737-743. |
[32] |
FERNANDES M R, MCCULLOCH J A, VIANELLO M A, et al. First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli sequence type 101 isolate from a human infection in Brazil[J]. Antimicrobial Agents and Chemotherapy, 2016,60(10):6415-6417.
DOI URL PMID |
[33] |
SONNEVEND Á, GHAZAWI A, ALQAHTANI M, et al. Plasmid-mediated colistin resistance in Escherichia coli from the Arabian Peninsula[J]. International Journal of Infectious Diseases, 2016,50:85-90.
DOI URL PMID |
[34] |
HU Y F, YANG X, LI J, et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes[J]. Applied and Environmental Microbiology, 2016,82(22):6672-6681.
DOI URL PMID |
[35] | KICHENARADJA P, SIGUIER P, PÉROCHON J, et al. ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes[J]. Nucleic Acids Research, 2010,38(Suppl. 1):D62-D68. |
[36] |
FURI L, HAIGH R, AL JABRI Z J H, et al. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes[J]. Frontiers in Microbiology, 2016,7:1008.
DOI URL PMID |
[37] |
SNESRUD E, HE S, CHANDLER M, et al. A model for transposition of the colistin resistance gene mcr-1 by ISApl1[J]. Antimicrobial Agents and Chemotherapy, 2016,60(11):6973-6976.
DOI URL PMID |
[38] |
HE S S, HICKMAN A B, VARANI A M, et al. Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition[J]. mBio, 2015,6(3):e00762.
DOI URL PMID |
[39] |
LI X B, XIE Y Z, LIU M, et al. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements[J]. Nucleic Acids Research, 2018,46(W1):W229-W234.
DOI URL PMID |
[40] |
SMILLIE C, GARCILLA'N-BARCIA M P, FRANCIA M V, et al. Mobility of plasmids[J]. Microbiology and Molecular Biology Reviews, 2010,74(3):434-452.
DOI URL PMID |
[41] | HAMMAD A M, HOFFMANN M, GONZALEZ-ESCALONA N, et al. Genomic features of colistin resistant Escherichia coli ST69 strain harboring mcr-1 on IncHI2 plasmid from raw milk cheese in Egypt[J]. Infection, Genetics and Evolution, 2019,73:126-131. |
[42] |
CHANG J, TANG B, CHEN Y F, et al. Two IncHI2 plasmid-mediated colistin-resistant Escherichia coli strains from the broiler chicken supply chain in Zhejiang Province, China[J]. Journal of Food Protection, 2020,83(8):1402-1410.
DOI URL PMID |
[43] |
ZHU Y G, ZHAO Y, LI B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017,2(4):16270.
DOI URL |
[44] | WANG Y N, LIU F, ZHU B L, et al. Discovery of tigecycline resistance genes Tet(X3) and Tet(X4) in live poultry market worker gut microbiomes and the surrounded environment[J]. Science Bulletin, 2020,65(5):340-342. |
[45] |
WANG Y N, HU Y F, CAO J, et al. Antibiotic resistance gene reservoir in live poultry markets[J]. The Journal of Infection, 2019,78(6):445-453.
DOI URL PMID |
[46] |
MIGURA-GARCIA L, GONZÁLEZ-LÓPEZ J J, MARTINEZ-URTAZA J, et al. Mcr-colistin resistance genes mobilized by IncX4, IncHI2, and IncI2 plasmids in Escherichia coli of pigs and white stork in Spain[J]. Frontiers in Microbiology, 2020,10:3072.
DOI URL PMID |
[47] |
MONTE D F, NELSON V, CERDEIRA L, et al. Multidrug-and colistin-resistant Salmonella enterica 4, [5], 12: i:-sequence type 34 carrying the mcr-3.1 gene on the IncHI2 plasmid recovered from a human[J]. Journal of Medical Microbiology, 2019,68(11):1694.
DOI URL PMID |
[48] |
TRUJILLO-SOTO T, MACHUCA J, ARCA-SUÁREZ J, et al. Co-occurrence of mcr-1 and qnrS1 on an IncHI2 plasmid in clinical isolates of Salmonella typhimurium in Spain[J]. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 2019,19(9):662-665.
DOI URL PMID |
[49] | PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015,16(1):1-14. |
[50] |
MEDARDUS J J, MOLLA B Z, NICOL M, et al. In-feed use of heavy metal micronutrients in US swine production systems and its role in persistence of multidrug-resistant salmonellae[J]. Applied and Environmental Microbiology, 2014,80(7):2317-2325.
DOI URL PMID |
[51] | STRASSMANN G, SREDNI B, ALBECK M, et al. Tellurium containing nutrient formulation and process for enhancing the cumulative weight gain or feed efficacy in poultry: US7045150 [P]. 2001-07-31. |
[52] |
YAZDANKHAH S, RUDI K, BERNHOFT A. Zinc and copper in animal feed-development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin[J]. Microbial Ecology in Health & Disease, 2014,25.
DOI URL PMID |
[53] | TRCKOVA M, MATLOVA L, DVORSKA L, et al. Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks[J]. Veterinání Medicína, 2012,49(10):389-399. |
[54] | 续倩, 何绮霞, 吴维煇, 等. 常用矿物质饲料原料重金属含量现状和分析[J]. 饲料研究, 2015(21):69-72. |
XU Q, HE Q X, WU W H, et al. Current situation and analysis of heavy metal content in common mineral feed materials[J]. Feed Research, 2015(21):69-72. (in Chinese) | |
[55] | 田西学, 李宏, 李胜, 等. 我国天然矿物质饲料原料中重金属预警监测结果分析[J]. 饲料研究, 2017(8):36-42. |
TIAN X X, LI H, LI S, et al. Analysis of early warning and monitoring results of heavy metals in natural mineral feed raw materials in China[J]. Feed Research, 2017(8):36-42. (in Chinese) |
[1] | 常江, 罗怡, 唐标, 张玲, 戴贤君, 裘罕琦, 杨华, 夏效东. 一株分离自鸡肉样品的多重耐药大肠埃希菌的全基因组测序及耐药性研究[J]. 浙江农业学报, 2019, 31(8): 1249-1256. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 899
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||