浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 259-269.DOI: 10.3969/j.issn.1004-1524.2021.02.09
程晶a,b(), 刘济明a,b,*(
), 王姝a,b, 王灯a,b, 李丽霞a,b, 徐国瑞a,b, 陈梦a,b, 黄路婷a,b
收稿日期:
2020-07-03
出版日期:
2021-02-25
发布日期:
2021-02-25
通讯作者:
刘济明
作者简介:
刘济明,E-mail: karst0623@163.com基金资助:
CHENG Jinga,b(), LIU Jiminga,b,*(
), WANG Shua,b, WANG Denga,b, LI Lixiaa,b, XU Guoruia,b, CHEN Menga,b, HUANG Lutinga,b
Received:
2020-07-03
Online:
2021-02-25
Published:
2021-02-25
Contact:
LIU Jiming
摘要:
为了解喀斯特特有植物在不同水分条件下的可塑性差异及适应能力,以1年生罗甸小米核桃幼苗为研究对象,设置不同水分条件[(100±5)%、(80±5)%、(60±5)%、(40±5)%],探讨罗甸小米核桃幼苗形态、生物量分配和生理特征的可塑性差异。结果表明,与CK组相比,罗甸小米核桃幼苗在高水与低水胁迫下的苗高、地径生长量均降低,根长、叶面积与比叶面积下降,叶片肉质化程度显著下降,叶片组织结构紧密度在中度低水(40±5)%下升高;总生物量下降,茎叶生物分配量均降低,在中度低水胁迫下其根部资源投入增多,根冠比增加;净光合速率(Pn)和蒸腾速率(Tr)均降低,气孔导度(Gs)在轻度高水(100±5)%下略微升高,胞间CO2浓度(Ci)基本稳定。叶绿素b和叶绿素总量仅在轻度高水下升高。综合罗甸小米核桃幼苗在不同水分条件的可塑性指标(范围为0.02~0.50),净光合速率最高0.50,其次为叶面积和茎生物量,叶绿素a可塑性最低0.02。罗甸小米核桃幼苗对水分可塑响应的敏感程度及调控机制存在明显差异,主要通过塑造叶面积、茎生物量、净光合速率等性状协同调控。在正常供水(80±5)%和轻度高水胁迫(100±5)%下可以满足罗甸小米核桃幼苗生长对水分的需求。
中图分类号:
程晶, 刘济明, 王姝, 王灯, 李丽霞, 徐国瑞, 陈梦, 黄路婷. 喀斯特特有植物罗甸小米核桃响应土壤水分的表型可塑性[J]. 浙江农业学报, 2021, 33(2): 259-269.
CHENG Jing, LIU Jiming, WANG Shu, WANG Deng, LI Lixia, XU Guorui, CHEN Meng, HUANG Luting. Plasticity of a karst endemic plant Juglans regia L. f. luodianense Liu et Xu in response to soil moisture[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 259-269.
处理 Treatment | 苗高 Height/cm | 地径 Diameter/cm | 叶面积 Leaf area/cm2 | 比叶面积 SLA/(cm2·g) | 根茎比 RRS | 根长 RL/cm | 叶片肉质化 程度LS |
---|---|---|---|---|---|---|---|
CK | 53.10±1.56 a | 1.08±0.05 a | 5 194.78±100.26 a | 311.17±5.61 a | 0.74±0.02 a | 42.82±0.88 a | 3.52±0.07 a |
W1 | 50.48±1.21 ab | 1.11±0.05 a | 4 690.26±89.05 b | 318.99±6.36 a | 0.84±0.01 a | 39.51±0.78 a | 3.59±0.09 a |
W2 | 45.10±0.59 b | 1.08±0.03 a | 3 069.02±59.27 cd | 251.99±3.21 b | 0.88±0.03 a | 36.88±0.65 a | 3.46±0.04 a |
W3 | 47.82±1.06 b | 0.94±0.03 b | 2 705.54±78.01 d | 254.54±4.69 b | 0.77±0.01 a | 39.85±0.75 a | 2.24±0.08 b |
表1 不同水分条件下罗甸小米核桃幼苗形态特征
Table 1 Morphological traits of J. regia seedlings under different water conditions
处理 Treatment | 苗高 Height/cm | 地径 Diameter/cm | 叶面积 Leaf area/cm2 | 比叶面积 SLA/(cm2·g) | 根茎比 RRS | 根长 RL/cm | 叶片肉质化 程度LS |
---|---|---|---|---|---|---|---|
CK | 53.10±1.56 a | 1.08±0.05 a | 5 194.78±100.26 a | 311.17±5.61 a | 0.74±0.02 a | 42.82±0.88 a | 3.52±0.07 a |
W1 | 50.48±1.21 ab | 1.11±0.05 a | 4 690.26±89.05 b | 318.99±6.36 a | 0.84±0.01 a | 39.51±0.78 a | 3.59±0.09 a |
W2 | 45.10±0.59 b | 1.08±0.03 a | 3 069.02±59.27 cd | 251.99±3.21 b | 0.88±0.03 a | 36.88±0.65 a | 3.46±0.04 a |
W3 | 47.82±1.06 b | 0.94±0.03 b | 2 705.54±78.01 d | 254.54±4.69 b | 0.77±0.01 a | 39.85±0.75 a | 2.24±0.08 b |
处理 Treatment | 栅栏组织厚度 Palisade tissue thickness/μm | 海绵组织厚度 Spongy tissue thickness/μm | 叶片总厚度 LT/μm | 栅/海 Palisade tissue/ spongy tissue | 叶片组织结构紧 密度 CTR/% | 叶片组织结构 疏松度 SR/% |
---|---|---|---|---|---|---|
CK | 45.293±0.816 aA | 55.876±0.823 abAB | 124.198±1.211 aA | 0.811±0.015 aAB | 36.5±0.005 aA | 45.0±0.3 bcAC |
W1 | 43.764±1.173 aA | 51.600±1.683 bB | 119.444±1.795 abAB | 0.848±0.035 aA | 36.6±0.008 aA | 43.2±0.9 cC |
W2 | 33.683±0.762 cC | 58.552±1.942 aA | 116.076±1.020 bcB | 0.575±0.016 cC | 29.0±0.004 cB | 50.4±0.9 aA |
W3 | 38.389±1.012 bB | 54.013±1.679 abAB | 113.783±1.768 cB | 0.711±0.035 bB | 33.7±0.011 bA | 47.5±0.9 abAB |
表2 不同水分条件下叶片组织厚度
Table 2 Blade thickness under different water conditions
处理 Treatment | 栅栏组织厚度 Palisade tissue thickness/μm | 海绵组织厚度 Spongy tissue thickness/μm | 叶片总厚度 LT/μm | 栅/海 Palisade tissue/ spongy tissue | 叶片组织结构紧 密度 CTR/% | 叶片组织结构 疏松度 SR/% |
---|---|---|---|---|---|---|
CK | 45.293±0.816 aA | 55.876±0.823 abAB | 124.198±1.211 aA | 0.811±0.015 aAB | 36.5±0.005 aA | 45.0±0.3 bcAC |
W1 | 43.764±1.173 aA | 51.600±1.683 bB | 119.444±1.795 abAB | 0.848±0.035 aA | 36.6±0.008 aA | 43.2±0.9 cC |
W2 | 33.683±0.762 cC | 58.552±1.942 aA | 116.076±1.020 bcB | 0.575±0.016 cC | 29.0±0.004 cB | 50.4±0.9 aA |
W3 | 38.389±1.012 bB | 54.013±1.679 abAB | 113.783±1.768 cB | 0.711±0.035 bB | 33.7±0.011 bA | 47.5±0.9 abAB |
图1 不同水分条件下罗甸小米核桃幼苗各部位生物量积累 同组数据间没有相同大小写字母表示差异显著或极显著(P<0.05或<0.01)。下同。
Fig.1 Biomass accumulation of J.regia seedlings under different water conditions Group data between different capital letters indicated significant or extremely significant difference (P<0.05 or<0.01). The same as below.
[1] | 夏江宝, 田家怡, 张光灿, 等. 黄河三角洲贝壳堤岛3种灌木光合生理特征研究[J]. 西北植物学报, 2009,29(7):1452-1459. |
XIA J B, TIAN J Y, ZHANG G C, et al. Photosynthetic and physiological characteristics of three shrubs species in shell Islands of Yellow River Delta[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009,29(7):1452-1459.(in Chinese with English abstract) | |
[2] | 陈建, 张光灿, 张淑勇, 等. 辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程[J]. 应用生态学报, 2008,19(6):1185-1190. |
CHEN J, ZHANG G C, ZHANG S Y, et al. Response processes of Aralia elata photosynjournal and transpiration to light and soil moisture[J]. Chinese Journal of Applied Ecology, 2008,19(6):1185-1190.(in Chinese with English abstract) | |
[3] |
DU N, GUO W H, ZHANG X R, et al. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress[J]. Acta Physiologiae Plantarum, 2010,32(5):839-848.
DOI URL |
[4] | 朱守谦. 喀斯特森林生态研究I[M]. 贵阳:贵州科技出版社, 1993. |
[5] | 李安定, 卢永飞, 韦小丽, 等. 花江喀斯特峡谷地区不同小生境土壤水分的动态研究[J]. 中国岩溶, 2008,27(1):56-62. |
LI A D, LU Y F, WEI X L, et al. Studies on the regime of soil moisture under different microhabitats in Huajiang karst valley[J]. Carsologica Sinica, 2008,27(1):56-62.(in Chinese with English abstract) | |
[6] | 朱守谦. 喀斯特森林生态研究.III[M]. 贵阳: 贵州科技出版社, 2003. |
[7] | 王家文, 周跃, 肖本秀, 等. 中国西南喀斯特土壤水分特征研究进展[J]. 中国水土保持, 2013(2):37-41. |
WANG J W, ZHOU Y, XIAO B X, et al. Progress of study on karst soil moisture characteristics of southwest China[J]. Soil and Water Conservation in China, 2013(2):37-41.(in Chinese with English abstract) | |
[8] | 刘济明, 徐国瑞. 胡桃属一新变型[J]. 贵州科学, 2011,29(6):95-96. |
LIU J M, XU G R. A new forma of Juglans regia L[J]. Guizhou Science, 2011,29(6):95-96.(in Chinese with English abstract) | |
[9] |
LIU C C, LIU Y G, GUO K, et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering[J]. Physiologia Plantarum, 2010,139(1):39-54.
DOI URL PMID |
[10] |
LIU C C, LIU Y G, FAN D Y, et al. Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscapes of southwestern China[J]. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012,207(1):30-38.
DOI URL |
[11] | 李鹏菊, 刘文杰, 王平元, 等. 西双版纳石灰山热带季节性湿润林内几种植物的水分利用策略[J]. 云南植物研究, 2008,30(4):496-504. |
LI P J, LIU W J, WANG P Y, et al. Plant water use strategies in a limestone tropical seasonal moist rainforest in Xishuangbanna, SW China[J]. Acta Botanica Yunnanica, 2008,30(4):496-504.(in Chinese with English abstract) | |
[12] | 唐洋, 温仲明, 王杨, 等. 土壤水分胁迫对刺槐幼苗生长、根叶性状和生物量分配的影响[J]. 水土保持通报, 2019,39(6):98-105. |
TANG Y, WEN Z M, WANG Y, et al. Effects of soil water stress on growth, root and leaf traits, and biomass allocation of Robinia pseudoacacia seedlings[J]. Bulletin of Soil and Water Conservation, 2019,39(6):98-105.(in Chinese with English abstract) | |
[13] |
GAO L, LI B, LIU W Y, et al. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes[J]. Aquatic Botany, 2013,107:47-53.
DOI URL |
[14] |
SULTAN S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000,5(12):537-542.
DOI URL PMID |
[15] | WELLS C L, PIGLIUCCI M. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2000,3(1):1-18. |
[16] | 金静, 钟章成, 刘锦春, 等. 石灰岩地区土壤水分对木豆表型可塑性的影响[J]. 西南农业大学学报(自然科学版), 2005,27(1):89-92. |
JIN J, ZHONG Z C, LIU J C, et al. Response of the phenotypic plasticity of cajannus Cajan seedlings to relative soil water content in limestone areas[J]. Journal of Southwest Agricultural University, 2005,27(1):89-92.(in Chinese with English abstract) | |
[17] |
MALAVASI U C, MALAVASI M M. Leaf characteristics and chlorophyll concentration of Schyzolobium parahybum and Hymenaea stilbocarpa seedlings grown in different light regimes[J]. Tree Physiology, 2001,21(10):701-703.
DOI URL PMID |
[18] |
OSADA N, TAKEDA H, KITAJIMA K, et al. Functional correlates of leaf demographic response to gap release in saplings of a shade-tolerant tree, Elateriospermum tapos[J]. Oecologia, 2003,137(2):181-187.
DOI URL PMID |
[19] | 王兴顺. 黄芩(Scutellaria baicalensis)幼苗对干旱胁迫的生理适应性反应[J]. 西北林学院学报, 2014,29(1):55-59. |
WANG X S. Physiological responses of Scutellaria baicalensis seedlings under drought stress[J]. Journal of Northwest Forestry University, 2014,29(1):55-59.(in Chinese with English abstract) | |
[20] | 关保华. 石荠苧属(Mosla)四种植物响应土壤水分的表型可塑性比较研究[D]. 杭州: 浙江大学, 2004. |
GUAN B H. Comparative study on phenotypic plasticity of four Mosla species in response to soil water status[D]. Hangzhou: Zhejiang University, 2004.(in Chinese with English abstract) | |
[21] |
EHLERINGER J R. Intraspecific competitive effects on water relations, growth and reproduction in Encelia farinosa[J]. Oecologia, 1984,63(2):153-158.
DOI URL PMID |
[22] | 刘济明, 赵晓鹏, 廖小峰, 等. 罗甸小米核桃抗氧化保护酶活性和丙二醛含量对干旱胁迫的响应[J]. 河南农业科学, 2012,41(9):122-126. |
LIU J M, ZHAO X P, LIAO X F, et al. Study on protective enzyme system and MDA content of Juglans regia L. f. luodianense Liu et xu under dry stress[J]. Journal of Henan Agricultural Sciences, 2012,41(9):122-126.(in Chinese with English abstract) | |
[23] | 徐国瑞, 刘济明, 闫国华, 等. 罗甸小米核桃叶绿素含量测定方法研究[J]. 山地农业生物学报, 2010,29(5):419-423. |
XU G R, LIU J M, YAN G H, et al. Quantification methods of chlorophyll from Juglans regia L. f. luodianense[J]. Journal of Mountain Agriculture and Biology, 2010,29(5):419-423.(in Chinese with English abstract) | |
[24] | 班荔, 肖朝新, 班殿举. 贵州长顺小米核桃栽培现状及产业发展[J]. 林业实用技术, 2013(8):12-13. |
BAN L, XIAO C X, BAN D J. Cultivation status and industrial development of Juglans regia L. f. in Changshun, Guizhou Province[J]. Practical Forestry Technology, 2013(8):12-13. | |
[25] | 文萍, 刘济明, 徐国瑞, 等. 水分胁迫对罗甸小米核桃光合与蒸腾作用的影响[J]. 贵州农业科学, 2013,41(8):57-60. |
WEN P, LIU J M, XU G R, et al. Effects of water stress on photosynjournal and transpiration of Juglans regia[J]. Guizhou Agricultural Sciences, 2013,41(8):57-60.(in Chinese with English abstract) | |
[26] | 王灯, 刘济明, 徐国瑞, 等. 罗甸小米核桃果实主要营养成分及形态性状分析[J]. 中国油脂, 2019,44(6):95-98. |
WANG D, LIU J M, XU G R, et al. Main nutritional ingredients and morphological characters of Juglans regia L. f. luodianense Liu et Xu[J]. China Oils and Fats, 2019,44(6):95-98.(in Chinese with English abstract) | |
[27] | HSIAO T C. Plant responses to water stress[J]. Annual Review of Plant Physiology, 1973,24(1):519-570. |
[28] | 周仪. 植物形态解剖实验[M]. 北京:北京师范大学出版社, 1987. |
[29] | 孟庆杰, 王光全, 董绍锋, 等. 桃叶片组织解剖结构特征与其抗旱性关系的研究[J]. 干旱地区农业研究, 2004,22(3):123-126. |
MENG Q J, WANG G Q, DONG S F, et al. Relation between leaf tissue parameters and drought resistance of peaches[J]. Agricultural Research in the Arid Areas, 2004,22(3):123-126.(in Chinese with English abstract) | |
[30] | LICHTENTHALER H K, WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983,11(5):591-592. |
[31] | ASHTON P M S, OLANDER L P, BERLYN G P, et al. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock[J]. Canadian Journal of Botany, 1998,76(7):1180-1187. |
[32] |
BOUGHALLEB F, HAJLAOUI H. Physiological and anatomical changes induced by drought in two olive cultivars (cv. Zalmati and Chemlali)[J]. Acta Physiologiae Plantarum, 2011,33(1):53-65.
DOI URL |
[33] | 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J]. 生态学报, 2009,29(10):5406-5416. |
LI F L, BAO W K, WU N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress[J]. Acta Ecologica Sinica, 2009,29(10):5406-5416.(in Chinese with English abstract) | |
[34] | 李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005,25(5):994-999. |
LI Y H, LUO T X, LU Q, et al. Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province[J]. Acta Ecologica Sinica, 2005,25(5):994-999.(in Chinese with English abstract) | |
[35] |
JOHNSON N C, ROWLAND D L, CORKIDI L, et al. Plant winners and losers during grassland n-eutrophication differ in biomass allocation and mycorrhizas[J]. Ecology, 2008,89(10):2868-2878.
DOI URL PMID |
[36] | 尹丽. 麻疯树幼苗对干旱胁迫及施氮的生理生态响应[D]. 雅安: 四川农业大学, 2011. |
YIN L. The physiological and ecological response of Jatropha curcas seedlings to drought stress and nitrogen application[D]. Ya’an: Sichuan Agricultural University, 2011.(in Chinese with English abstract) | |
[37] | 肖春旺, 董鸣, 周广胜, 等. 鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J]. 生态学报, 2001,21(1):171-176. |
XIAO C W, DONG M, ZHOU G S, et al. Response of Salix psammophila seedlings to simulated precipitation change in Ordas plateau[J]. Acta Ecologica Sinica, 2001,21(1):171-176.(in Chinese with English abstract) | |
[38] | 邱权, 李吉跃, 王军辉, 等. 干旱胁迫下青藏高原4种灌木生物量和根系变化特征及抗旱性[J]. 西北林学院学报, 2013,28(3):1-6, 33. |
QIU Q, LI J Y, WANG J H, et al. Biomass and root system characteristics and drought resistance of 4 shrubs in Tibetan Plateau under drought stress[J]. Journal of Northwest Forestry University, 2013,28(3):1-6, 33.(in Chinese with English abstract) | |
[39] | 井大炜, 邢尚军, 马海林, 等. I-107欧美杨对不同强度干旱胁迫的形态与生理响应[J]. 东北林业大学学报, 2014,42(1):10-13. |
JING D W, XING S J, MA H L, et al. Morphological and physiological responses of Populus×euramericana cv. ‘Neva’ to water stress[J]. Journal of Northeast Forestry University, 2014,42(1):10-13.(in Chinese with English abstract) | |
[40] | 惠竹梅, 孙万金, 张振文. 外源Ca2+对水分胁迫下酿酒葡萄黑比诺主要抗旱生理指标的影响 [J]. 西北农林科技大学学报(自然科学版), 2007,35(9):137-140. |
XI Z M, SUN W J, ZHANG Z W. Effect of exogenous Ca2+ on drought resistance physiological indexes of wine grape cultivar Pinot Noir under water stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2007,35(9):137-140.(in Chinese with English abstract) | |
[41] | 邹春静, 韩士杰, 徐文铎, 等. 沙地云杉生态型对干旱胁迫的生理生态响应[J]. 应用生态学报, 2003,14(9):1446-1450. |
ZOU C J, HAN S J, XU W D, et al. Eco-physiological responses of Picea mongolica ecotypes to drought stress[J]. Chinese Journal of Applied Ecology, 2003,14(9):1446-1450.(in Chinese with English abstract) | |
[42] | 陈昕, 徐宜凤, 张振英. 干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应[J]. 西北植物学报, 2012,32(1):111-116. |
CHEN X, XU Y F, ZHANG Z Y. Leaf anatomical structure and photosynthetic physiology responses of Sorbus folgneri seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(1):111-116.(in Chinese with English abstract) | |
[43] | 姚庆群, 谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制[J]. 热带农业科学, 2005,25(4):80-85. |
YAO Q Q, XIE G S. The photosynthetic stomatal and nonstomatal limitation under drought stress[J]. Chinese Journal of Tropical Agriculture, 2005,25(4):80-85.(in Chinese with English abstract) | |
[44] | 庞世龙, 欧芷阳, 申文辉, 等. 干旱胁迫对蚬木幼苗表型可塑性的影响[J]. 中南林业科技大学学报, 2017,37(5):21-25. |
PANG S L, OU Z Y, SHEN W H, et al. Effect of drought stress on phenotypic plasticity of Excentrodendron hsienmu seedlings[J]. Journal of Central South University of Forestry & Technology, 2017,37(5):21-25.(in Chinese with English abstract) | |
[45] | 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应[J]. 应用生态学报, 2017,28(5):1455-1463. |
DING L, ZHAO H M, ZENG W J, et al. Physiological responses of five plants in northwest China arid area under drought stress[J]. Chinese Journal of Applied Ecology, 2017,28(5):1455-1463.(in Chinese with English abstract) | |
[46] | 李瑞姣, 陈献志, 岳春雷, 等. 干旱胁迫对日本荚蒾幼苗光合生理特性的影响[J]. 生态学报, 2018,38(6):2041-2047. |
LI R J, CHEN X Z, YUE C L, et al. Effects of drought stress on the photosynthetic characteristics of Viburnum japonicum seedlings[J]. Acta Ecologica Sinica, 2018,38(6):2041-2047.(in Chinese with English abstract) | |
[47] | KOYRO H W. Effect of salinity on growth, photosynjournal, water relations and solute composition of the potential cash crop halophyte Plantago coronopus(L.)[J]. Environmental and Experimental Botany, 2006,56(2):136-146. |
[48] | 向芬, 周强, 田向荣, 等. 不同生境吉首蒲儿根叶片形态和叶绿素荧光特征的比较[J]. 生态学报, 2014,34(2):337-344. |
XIANG F, ZHOU Q, TIAN X R, et al. Leaf morphology and PSⅡchlorophyll fluorescence parameters in leaves of Sinosenecio jishouensis in different habitats[J]. Acta Ecologica Sinica, 2014,34(2):337-344.(in Chinese with English abstract) |
[1] | 王春梅, 顾行发, 余涛, 周翔, 占玉林, 韩乐然, 谢秋霞. 被动微波土壤水分产品真实性检验研究进展[J]. 浙江农业学报, 2019, 31(5): 846-854. |
[2] | 俞明涛, 张科锋. 基于HYDRUS-2D软件的土壤水力特征参数反演及间接地下滴灌的土壤水分运动模拟[J]. 浙江农业学报, 2019, 31(3): 458-468. |
[3] | 吴永成, 牛应泽, 胡宗达. 不同耕作措施下稻茬直播冬油菜田土壤呼吸研究[J]. 浙江农业学报, 2017, 29(9): 1430-1436. |
[4] | 马帅1,冯金朝1,*,公婷婷1,乌力吉2,李昱娴1,冯亚磊1,赵慧卿3. 内蒙古呼伦湖4种典型草地生长季土壤呼吸研究[J]. 浙江农业学报, 2015, 27(7): 1221-. |
[5] | 安乐生1,刘春2,廖凯华3. 一种改进的土壤水分特征曲线模型及其验证 [J]. 浙江农业学报, 2015, 27(5): 837-. |
[6] | 张东凯;刘济明*;徐国瑞;廖小锋;闫国华;王敏 . 不同坡位下罗甸小米核桃枝构件研究[J]. , 2011, 23(6): 0-1231. |
[7] | 路兴花;吴良欢;*;庞林江. 覆膜后土壤水分对水稻生物学特性和产量的影响[J]. , 2009, 21(05): 0-467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||