浙江农业学报 ›› 2021, Vol. 33 ›› Issue (3): 553-564.DOI: 10.3969/j.issn.1004-1524.2021.03.21
• 农业经济与发展 • 上一篇
收稿日期:
2020-07-23
出版日期:
2021-04-02
发布日期:
2021-03-25
通讯作者:
郑循刚
作者简介:
, 郑循刚,E-mail: zxg9@163.com基金资助:
ZHANG Shasha, ZHENG Xungang*(), ZHANG Bizhong
Received:
2020-07-23
Online:
2021-04-02
Published:
2021-03-25
Contact:
ZHENG Xungang
摘要:
交通基础设施建设是农村扶贫开发的一项重要工作。利用2008—2017年中国除香港、澳门、台湾、西藏外的30个省级行政区的面板数据,构建邻接矩阵和反地理距离矩阵,在进行空间相关检验的基础上选择相应空间计量模型,研究交通基础设施密度对农村减贫的直接效应和空间溢出效应。结果显示:省级层面上,农村贫困水平表现出显著(P<0.01)的空间集聚特征,省际分布呈现出高-高集聚或低-低集聚的特点,且随时间发展局部空间集聚特征逐渐增强。整体来看,公路密度和铁路密度的增大不仅对本地的农村减贫具有显著(P<0.01)的促进作用,对邻近地区的农村减贫也具有显著(P<0.05)的空间溢出效应,且在这2种效应上都以铁路的效果更好。从区域层面来看,公路密度的增大对本地的农村减贫仅在西部地区有显著(P<0.01)的直接效应,对邻近地区的农村减贫仅在东部地区产生显著的(P<0.01)空间溢出效应。铁路密度的增大在东部和中部地区对本地和邻近地区的农村减贫都具有显著(P<0.05)的促进作用,且这2种效应在中部地区的效果都较东部地区更好。据此建议,东部和中部地区应该优化铁路网络结构,提高路网质量,增大铁路在农村地区的覆盖范围和通达程度;西部地区应该积极发展公路交通,同时补齐铁路短板,通过促进当地资源开发和物资输出,发挥带动就业和减贫的作用。
中图分类号:
张莎莎, 郑循刚, 张必忠. 交通基础设施、空间溢出与农村减贫——基于面板数据的实证研究[J]. 浙江农业学报, 2021, 33(3): 553-564.
ZHANG Shasha, ZHENG Xungang, ZHANG Bizhong. Transportation infrastructure, spatial spillover and rural poverty reduction:an empirical study based on panel data[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 553-564.
变量 Variable | 样本数量 Sample number | 平均数 Mean | 标准差 Standard deviation | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|
Y | 300 | 0.079 | 0.046 | 0.010 | 0.235 |
Road/(km·km-2) | 300 | 0.896 | 0.482 | 0.079 | 2.109 |
Rail/(km·km-2) | 300 | 0.024 | 0.019 | 0.002 | 0.095 |
Urban | 300 | 0.547 | 0.132 | 0.291 | 0.896 |
Human | 300 | 0.028 | 0.018 | 0.006 | 0.141 |
Finance | 300 | 0.111 | 0.030 | 0.030 | 0.190 |
Security | 300 | 0.018 | 0.003 | 0.013 | 0.076 |
表1 2008—2017年所有变量的描述性统计
Table 1 Descriptive statistics for all variables in 2008-2017
变量 Variable | 样本数量 Sample number | 平均数 Mean | 标准差 Standard deviation | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|
Y | 300 | 0.079 | 0.046 | 0.010 | 0.235 |
Road/(km·km-2) | 300 | 0.896 | 0.482 | 0.079 | 2.109 |
Rail/(km·km-2) | 300 | 0.024 | 0.019 | 0.002 | 0.095 |
Urban | 300 | 0.547 | 0.132 | 0.291 | 0.896 |
Human | 300 | 0.028 | 0.018 | 0.006 | 0.141 |
Finance | 300 | 0.111 | 0.030 | 0.030 | 0.190 |
Security | 300 | 0.018 | 0.003 | 0.013 | 0.076 |
年份Year | I1 | Z | P |
---|---|---|---|
2008 | 0.528 | 4.902 | <0.001 |
2009 | 0.638 | 5.579 | <0.001 |
2010 | 0.468 | 4.393 | <0.001 |
2011 | 0.497 | 4.590 | <0.001 |
2012 | 0.485 | 4.435 | <0.001 |
2013 | 0.496 | 4.466 | <0.001 |
2014 | 0.502 | 4.505 | <0.001 |
2015 | 0.500 | 4.536 | <0.001 |
2016 | 0.575 | 5.083 | <0.001 |
2017 | 0.606 | 5.337 | <0.001 |
表2 2008—2017年农村贫困水平的Moran's Ⅰ指数结果
Table 2 Results of Moran's Ⅰ test for rural poverty levels in 2008-2017
年份Year | I1 | Z | P |
---|---|---|---|
2008 | 0.528 | 4.902 | <0.001 |
2009 | 0.638 | 5.579 | <0.001 |
2010 | 0.468 | 4.393 | <0.001 |
2011 | 0.497 | 4.590 | <0.001 |
2012 | 0.485 | 4.435 | <0.001 |
2013 | 0.496 | 4.466 | <0.001 |
2014 | 0.502 | 4.505 | <0.001 |
2015 | 0.500 | 4.536 | <0.001 |
2016 | 0.575 | 5.083 | <0.001 |
2017 | 0.606 | 5.337 | <0.001 |
图2 2008年(上)和2017年(下)农村贫困水平Moran散点图 1~30分别代表北京、天津、河北、山西、内蒙古、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、广西、海南、重庆、四川、贵州、云南、陕西、甘肃、青海、宁夏、新疆。
Fig.2 Moran scatter plots for rural poverty level in 2008 (up) and 2017 (down) 1-30 represented Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan,Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, respectively.
检验 Test | 统计量 Statistics | P |
---|---|---|
豪斯曼检验Hausman | 23.350 | 0.015 |
空间滞后模型拉格朗日乘子检验 Spatial lag LM | 5.752 | 0.016 |
空间误差模型拉格朗日乘子检验 Spatial error LM | 1.340 | 0.247 |
空间滞后模型稳健性拉格朗日乘子检验 Spatial lag robust LM | 4.493 | 0.034 |
空间误差模型稳健性拉格朗日乘子检验 Spatial error robust LM | 0.080 | 0.777 |
空间固定效应似然比检验 Spatial fixed effects LR | 32.085 | 0.364 |
时间固定效应似然比检验 Time fixed effects LR | 93.256 | <0.001 |
空间滞后模型瓦尔德检验 Spatial lag Wald | 10.382 | 0.110 |
空间误差模型瓦尔德检验 Spatial error Wald | 14.970 | 0.021 |
表3 空间计量模型检验结果
Table 3 Test results of spatial econometric model
检验 Test | 统计量 Statistics | P |
---|---|---|
豪斯曼检验Hausman | 23.350 | 0.015 |
空间滞后模型拉格朗日乘子检验 Spatial lag LM | 5.752 | 0.016 |
空间误差模型拉格朗日乘子检验 Spatial error LM | 1.340 | 0.247 |
空间滞后模型稳健性拉格朗日乘子检验 Spatial lag robust LM | 4.493 | 0.034 |
空间误差模型稳健性拉格朗日乘子检验 Spatial error robust LM | 0.080 | 0.777 |
空间固定效应似然比检验 Spatial fixed effects LR | 32.085 | 0.364 |
时间固定效应似然比检验 Time fixed effects LR | 93.256 | <0.001 |
空间滞后模型瓦尔德检验 Spatial lag Wald | 10.382 | 0.110 |
空间误差模型瓦尔德检验 Spatial error Wald | 14.970 | 0.021 |
变量 Variable | 普通最小二乘法OLS | 空间滞后模型SAR | 空间杜宾模型SDM | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.018*** | -7.41 | -0.014*** | -4.74 | -0.010*** | -2.72 | ||
Rail | -0.543*** | -7.86 | -0.365*** | -4.37 | -0.315*** | -2.89 | ||
Urban | -0.052*** | -5.54 | -0.040*** | -3.35 | -0.050*** | -3.51 | ||
Human | -0.198*** | -2.86 | -0.029* | -1.87 | -0.036** | -2.21 | ||
Finance | 0.069** | 2.10 | 0.106* | 1.82 | 0.110* | 1.81 | ||
Security | 2.475*** | 24.20 | 2.537*** | 28.91 | 2.518*** | 28.10 | ||
W1*Road | — | — | — | — | -0.015** | -2.19 | ||
W1*Rail | — | — | — | — | 0.085 | 0.51 | ||
W1*Urban | — | — | — | — | -0.025 | -0.95 | ||
W1*Human | — | — | — | — | -0.031 | -1.03 | ||
W1*Finance | — | — | — | — | -0.244** | -2.19 | ||
W1*Security | — | — | — | — | -0.170 | -0.66 | ||
ρ | — | — | 0.121*** | 3.22 | 0.118 | 1.44 | ||
R2 | 0.872 | — | 0.877 | — | 0.875 | — |
表4 基于邻接矩阵的空间计量模型回归结果
Table 4 Regression results of spatial econometric mode based on adjacency matrix
变量 Variable | 普通最小二乘法OLS | 空间滞后模型SAR | 空间杜宾模型SDM | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.018*** | -7.41 | -0.014*** | -4.74 | -0.010*** | -2.72 | ||
Rail | -0.543*** | -7.86 | -0.365*** | -4.37 | -0.315*** | -2.89 | ||
Urban | -0.052*** | -5.54 | -0.040*** | -3.35 | -0.050*** | -3.51 | ||
Human | -0.198*** | -2.86 | -0.029* | -1.87 | -0.036** | -2.21 | ||
Finance | 0.069** | 2.10 | 0.106* | 1.82 | 0.110* | 1.81 | ||
Security | 2.475*** | 24.20 | 2.537*** | 28.91 | 2.518*** | 28.10 | ||
W1*Road | — | — | — | — | -0.015** | -2.19 | ||
W1*Rail | — | — | — | — | 0.085 | 0.51 | ||
W1*Urban | — | — | — | — | -0.025 | -0.95 | ||
W1*Human | — | — | — | — | -0.031 | -1.03 | ||
W1*Finance | — | — | — | — | -0.244** | -2.19 | ||
W1*Security | — | — | — | — | -0.170 | -0.66 | ||
ρ | — | — | 0.121*** | 3.22 | 0.118 | 1.44 | ||
R2 | 0.872 | — | 0.877 | — | 0.875 | — |
变量 Variable | 直接效应 Direct effect | t统计量 t-statistics | 间接效应 Indirect effect | t统计量 t-statistics | 总效应 Total effect | t统计量 t-statistic |
---|---|---|---|---|---|---|
Road | -0.015*** | -5.72 | -0.002** | -2.57 | -0.017*** | -6.08 |
Rail | -0.463*** | -5.97 | -0.056** | -2.56 | -0.519*** | -6.26 |
Urban | -0.052*** | -5.35 | -0.006** | -2.21 | -0.058*** | -5.12 |
Human | -0.201*** | -2.93 | -0.024* | -1.92 | -0.225*** | 2.94 |
Finance | 0.063* | 1.75 | 0.008 | 1.33 | 0.071* | 1.74 |
Security | 2.407*** | 29.77 | 0.297** | 2.57 | 2.704*** | 22.10 |
表5 各变量对农村贫困水平的直接效应与间接效应
Table 5 Direct and indirect effects of different variables on rural poverty level
变量 Variable | 直接效应 Direct effect | t统计量 t-statistics | 间接效应 Indirect effect | t统计量 t-statistics | 总效应 Total effect | t统计量 t-statistic |
---|---|---|---|---|---|---|
Road | -0.015*** | -5.72 | -0.002** | -2.57 | -0.017*** | -6.08 |
Rail | -0.463*** | -5.97 | -0.056** | -2.56 | -0.519*** | -6.26 |
Urban | -0.052*** | -5.35 | -0.006** | -2.21 | -0.058*** | -5.12 |
Human | -0.201*** | -2.93 | -0.024* | -1.92 | -0.225*** | 2.94 |
Finance | 0.063* | 1.75 | 0.008 | 1.33 | 0.071* | 1.74 |
Security | 2.407*** | 29.77 | 0.297** | 2.57 | 2.704*** | 22.10 |
变量 Variable | 东部Eastern(n=110) | 中部Central(n=80) | 西部Western(n=110) | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.005 | -1.47 | -0.007 | -0.89 | -0.030*** | -3.61 | ||
Rail | -0.528*** | -6.11 | -1.816*** | -3.80 | 0.203 | 0.62 | ||
Urban | 0.011 | 1.21 | 0.027 | 1.42 | -0.110** | -2.00 | ||
Human | 0.085*** | 2.59 | 0.033 | 0.88 | 0.147** | 2.05 | ||
Finance | 0.028 | 0.13 | 1.573*** | 4.33 | 2.218*** | 12.16 | ||
Security | -0.040 | -0.60 | 0.076 | 0.39 | -0.018 | -0.06 | ||
W2*Road | -0.041*** | -5.48 | -0.001 | -0.11 | 0.040 | -1.61 | ||
W2*Rail | -0.203** | -1.98 | -2.161*** | -3.81 | 1.551 | 0.83 | ||
W2*Urban | 0.106*** | 3.95 | 0.033 | 0.95 | -0.052 | -0.46 | ||
W2*Human | 0.128* | 1.76 | -0.003 | -0.05 | 0.268 | 1.45 | ||
W2*Finance | 0.985*** | 3.46 | 3.518*** | 4.75 | 0.528 | 0.94 | ||
W2*Security | 0.152 | 1.42 | 0.100 | 0.24 | -2.254 | -2.89 | ||
ρ | 0.340*** | 2.93 | 0.198** | 2.11 | 0.162* | 1.70 | ||
R2 | 0.596 | — | 0.303 | — | 0.578 | — |
表6 基于反地理距离矩阵的东、中、西部空间计量模型的回归结果
Table 6 Regression results of spatial econometric model in eastern, central and western regions based on inverse geographic distance matrix
变量 Variable | 东部Eastern(n=110) | 中部Central(n=80) | 西部Western(n=110) | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.005 | -1.47 | -0.007 | -0.89 | -0.030*** | -3.61 | ||
Rail | -0.528*** | -6.11 | -1.816*** | -3.80 | 0.203 | 0.62 | ||
Urban | 0.011 | 1.21 | 0.027 | 1.42 | -0.110** | -2.00 | ||
Human | 0.085*** | 2.59 | 0.033 | 0.88 | 0.147** | 2.05 | ||
Finance | 0.028 | 0.13 | 1.573*** | 4.33 | 2.218*** | 12.16 | ||
Security | -0.040 | -0.60 | 0.076 | 0.39 | -0.018 | -0.06 | ||
W2*Road | -0.041*** | -5.48 | -0.001 | -0.11 | 0.040 | -1.61 | ||
W2*Rail | -0.203** | -1.98 | -2.161*** | -3.81 | 1.551 | 0.83 | ||
W2*Urban | 0.106*** | 3.95 | 0.033 | 0.95 | -0.052 | -0.46 | ||
W2*Human | 0.128* | 1.76 | -0.003 | -0.05 | 0.268 | 1.45 | ||
W2*Finance | 0.985*** | 3.46 | 3.518*** | 4.75 | 0.528 | 0.94 | ||
W2*Security | 0.152 | 1.42 | 0.100 | 0.24 | -2.254 | -2.89 | ||
ρ | 0.340*** | 2.93 | 0.198** | 2.11 | 0.162* | 1.70 | ||
R2 | 0.596 | — | 0.303 | — | 0.578 | — |
变量 Variable | 普通最小二乘法OLS | 空间滞后模型SAR | 空间杜宾模型SDM | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.018*** | -7.41 | -0.019*** | -7.35 | -0.011*** | -3.11 | ||
Rail | -0.543*** | -7.86 | -0.559*** | -7.00 | -0.713*** | -6.04 | ||
Urban | -0.052*** | -5.54 | -0.052*** | -5.12 | -0.052*** | -3.74 | ||
Human | -0.198*** | -2.86 | -0.218*** | -2.97 | -0.138* | -1.57 | ||
Finance | 0.069** | 2.10 | 0.060 | 1.64 | 0.037 | 0.88 | ||
Security | 2.475*** | 24.20 | 2.532*** | 28.80 | 2.491*** | 26.44 | ||
W2*Road | — | — | — | — | -0.022*** | -1.84 | ||
W2*Rail | — | — | — | — | -0.444*** | -3.13 | ||
W2*Urban | — | — | — | — | 0.112*** | 3.34 | ||
W2*Human | — | — | — | — | -0.365* | -1.79 | ||
W2*Finance | — | — | — | — | -0.038 | -0.30 | ||
W2*Security | — | — | — | — | 0.489 | 1.43 | ||
ρ | — | — | 0.237 | 3.25 | 0.224* | 2.15 | ||
R2 | 0.872 | — | 0.872 | — | 0.882 | — |
表7 基于反地理距离矩阵空间计量模型回归结果
Table 7 Regression results of spatial econometric mode based on Inverse geographic distance matrix
变量 Variable | 普通最小二乘法OLS | 空间滞后模型SAR | 空间杜宾模型SDM | |||||
---|---|---|---|---|---|---|---|---|
系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | 系数Coefficient | t统计量t-statistics | |||
Road | -0.018*** | -7.41 | -0.019*** | -7.35 | -0.011*** | -3.11 | ||
Rail | -0.543*** | -7.86 | -0.559*** | -7.00 | -0.713*** | -6.04 | ||
Urban | -0.052*** | -5.54 | -0.052*** | -5.12 | -0.052*** | -3.74 | ||
Human | -0.198*** | -2.86 | -0.218*** | -2.97 | -0.138* | -1.57 | ||
Finance | 0.069** | 2.10 | 0.060 | 1.64 | 0.037 | 0.88 | ||
Security | 2.475*** | 24.20 | 2.532*** | 28.80 | 2.491*** | 26.44 | ||
W2*Road | — | — | — | — | -0.022*** | -1.84 | ||
W2*Rail | — | — | — | — | -0.444*** | -3.13 | ||
W2*Urban | — | — | — | — | 0.112*** | 3.34 | ||
W2*Human | — | — | — | — | -0.365* | -1.79 | ||
W2*Finance | — | — | — | — | -0.038 | -0.30 | ||
W2*Security | — | — | — | — | 0.489 | 1.43 | ||
ρ | — | — | 0.237 | 3.25 | 0.224* | 2.15 | ||
R2 | 0.872 | — | 0.872 | — | 0.882 | — |
[1] | United Nations ESCAP. Transport and communications bulletin for Asia and the Pacific No.86 sustainable rural access[EB/OL].( 2016 -12-19)[2020-07-23]. https://www.unescap.org/publications/transport-and-communications-bulletin-asia-and-pacific-no-86-sustainable-rural-access. |
[2] | HEARN D H, HALBRENDT C K, GEMPESAW C , et al. An analysis of transport improvements in China's corn sector: a hybrid spatial equilibrium approach[J]. Journal of the Transportation Research Forum, 1990,31(1):154-166. |
[3] | 樊胜根 . 经济增长、地区差距与贫困: 中国农村公共投资研究[M]. 北京: 中国农业出版社, 2002: 118-120. |
[4] | 吴国宝 . 农村公路基础设施对减缓贫困的影响评价[C]// 北京: 2006中国人文社会科学论坛暨新农村建设与和谐社会论坛, 2006. |
[5] | 李胜文, 闫俊强 . 农村基础设施及其空间溢出效应对农村经济增长的影响[J]. 华中农业大学学报(社会科学版), 2011(4):10-14. |
LI S W, YAN J Q . Impact of rural infrastructure and its spatial spillover effects on rural economic growth[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2011(4):10-14.(in Chinese with English abstract) | |
[6] | 曹小曙, 郭建忠, 马卫 . 陆路交通基础设施对农业产出的空间溢出效应[J]. 地域研究与开发, 2018,37(4):1-7. |
CAO X S, GUO J Z, MA W . Spatial spillover effects of land transport infrastructure on agricultural output across China[J]. Areal Research and Development, 2018,37(4):1-7.(in Chinese with English abstract) | |
[7] | 李杰 . 我国农村基础设施建设对贫困地区的减贫效应研究[D]. 西安: 西北大学, 2018. |
LI J . Infrastructure and poverty-alleviation in impoverished regions in China: an empirical investigation[D]. Xi'an: Northwest University, 2018. | |
[8] | VAN DE WALLE D, CRATTY D. Impact evaluation of a rural road rehabilitation project[EB/OL].[ 2020- 07- 23]. http://agro.gov.vn/images/2007/04/11258_Dwalle-Impact-Rural_Roads.pdf . |
[9] | GANNON C, GWILLIAM K, IRIGOYEN J L, et al. Socioeconomic impact assessment of rural roads: methodology and questionnaires[EB/OL].[ 2020- 07- 23]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.201.1700 . |
[10] |
GIBSON J, ROZELLE S . Poverty and access to roads in Papua New Guinea[J]. Economic Development and Cultural Change, 2003,52(1):159-185.
DOI URL |
[11] | 任晓红, 张宗益 . 交通基础设施、要素流动与城乡收入差距[J]. 管理评论, 2013,25(2):51-59. |
REN X H, ZHANG Z Y . Transportation infrastructure, factor mobility and urban-rural income gap[J]. Management Review, 2013,25(2):51-59.(in Chinese with English abstract) | |
[12] | 康继军, 郭蒙, 傅蕴英 . 要想富, 先修路?: 交通基础设施建设、交通运输业发展与贫困减少的实证研究[J]. 经济问题探索, 2014(9):41-46. |
KANG J J, GUO M, FU Y Y . To be rich, build roads first?: an empirical study on transportation infrastructure construction, transportation industry development and poverty reduction[J]. Inquiry into Economic Issues, 2014(9):41-46. (in Chinese) | |
[13] | 鞠晴江 . 道路基础设施、经济增长和减贫: 基于四川的实证分析[J]. 软科学, 2006,20(6):52-55. |
JU Q J . Road infrastructure, economic growth and poverty reduction: an empirical analysis in Sichuan[J]. Soft Science, 2006,20(6):52-55.(in Chinese with English abstract) | |
[14] | 董焰, 樊桦. 中国的交通基础设施,增长与减贫[EB/OL]. ( 2004- 02- 23)[2020-07-23]. http://documents1.worldbank.org/curated/zh/885341468029046917/pdf/307-740CHINESE01401PUBLIC10Infr1case.pdf . |
[15] | 郭君平 . 交通基础设施建设的农村减贫效应[J]. 贵州农业科学, 2013,41(12):213-217. |
GUO J P . Research on rural poverty reduction effect of traffic infrastructure[J]. Guizhou Agricultural Sciences, 2013,41(12):213-217.(in Chinese with English abstract) | |
[16] | ALI I, PERNIA E M . Infrastructure and poverty reduction: what is the connection?[EB/OL].[2020-07-23].https://think-asia.org/handle/11540/613 . |
[17] | 高鸣, 宋洪远 . 粮食生产技术效率的空间收敛及功能区差异: 兼论技术扩散的空间涟漪效应[J]. 管理世界, 2014(7):83-92. |
GAO M, SONG H Y . Spatial convergence and functional area difference of technical efficiency in grain production: also on spatial ripple effect of technical diffusion[J]. Management World, 2014(7):83-92. (in Chinese with English abstract) | |
[18] | 谭燕芝, 彭千芮 . 普惠金融发展与贫困减缓: 直接影响与空间溢出效应[J]. 当代财经, 2018(3):56-67. |
TAN Y Z, PENG Q R . Inclusive financial development and poverty alleviation: direct impact and spatial spillover effect[J]. Contemporary Finance & Economics, 2018(3):56-67.(in Chinese with English abstract) | |
[19] | 向春玲 . 中国城市化发展与反思[M]. 昆明: 云南教育出版社, 2013. |
[20] | 程洪宝 . 城镇化与农民增收的负相关分析[J]. 学术论坛, 2005,28(12):111-114. |
CHENG H B . Analysis of negative correlation between urbanization and rural income[J]. Academic Forum, 2005,28(12):111-114. (in Chinese) | |
[21] | 张车伟 . 人力资本回报率变化与收入差距: “马太效应”及其政策含义[J]. 经济研究, 2006,41(12):59-70. |
ZHANG J W . Human capital return and income disparity: ‘Mathew effect' and its implication[J]. Economic Research Journal, 2006,41(12):59-70.(in Chinese with English abstract) | |
[22] | 林迪珊, 张兴祥, 陈毓虹 . 公共教育投资是否有助于缓解人口贫困: 基于跨国面板数据的实证检验[J]. 财贸经济, 2016(8):34-49. |
LIN D S, ZHANG X X, CHEN Y H . Do public expenditures on education alleviate the poverty?: an empirical analysis based on the cross-country panel data[J]. Finance & Trade Economics, 2016(8):34-49.(in Chinese with English abstract) | |
[23] | 高远东, 温涛, 王小华 . 中国财政金融支农政策减贫效应的空间计量研究[J]. 经济科学, 2013(1):36-46. |
GAO Y D, WEN T, WANG X H . Spatial measurement research on poverty reduction effect of China's fiscal and financial support policies for agriculture[J]. Economic Science, 2013(1):36-46. (in Chinese) | |
[24] | 陈强 . 高级计量经济学及Stata应用[M]. 2版.北京: 高等教育出版社, 2014. |
[25] |
ELHORST P J . Matlab software for spatial panels[J]. International Regional Science Review, 2014,37(3):389-405.
DOI URL |
[26] | ANSELIN L, FLORAX R J G M. New directions in spatial econometrics[M]. Berlin: Springer, 1995. |
[27] | LESAGE J P, PACE R K. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2009: 513-514. |
[1] | 刘姣姣, 张钢仁, 高群. 基于VEC-BEKK-GARCH和溢出指数模型的畜产品价格联动效应研究[J]. 浙江农业学报, 2020, 32(9): 1711-1721. |
[2] | 刘洋, 陈英, 张玉娇, 田丰. 农户参与农地整治的空间特征及其影响因素分析--以甘肃省河西走廊区为例[J]. 浙江农业学报, 2017, 29(8): 1398-1408. |
[3] | 崔凯,李宁辉,郭静利*. 农业生产的空间效应、产出弹性与技术差异分析——来自京津区县的例证[J]. 浙江农业学报, 2015, 27(12): 2240-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||