浙江农业学报 ›› 2021, Vol. 33 ›› Issue (6): 1149-1158.DOI: 10.3969/j.issn.1004-1524.2021.06.21
• 综述 • 上一篇
收稿日期:
2020-09-16
出版日期:
2021-06-25
发布日期:
2021-06-25
通讯作者:
王锦
作者简介:
*王锦,E-mail: 908505685@qq.com基金资助:
WANG Ying(), MU Yanxia, WANG Jin*(
)
Received:
2020-09-16
Online:
2021-06-25
Published:
2021-06-25
Contact:
WANG Jin
摘要:
花器官的发生发育与形态构造是一个高度复杂的项目,涉及众多因素及其相互作用,MADS-box基因作为其中的关键转录因子可以改变整个发育过程,因而成为花器官研究最广泛的基因家族。通过梳理目前MADS-box基因对花器官发生、分化和形态建成方面的调控作用,为了解花发育程序和该基因家族的一般转录调控机制提供新见解,也为进一步深入挖掘该家族基因和完善花发育调控理论提供参考。
中图分类号:
王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158.
WANG Ying, MU Yanxia, WANG Jin. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158.
基因 Gene | 功能 Function | 表达模式 Expression pattern | 同源基因 Homologous gene |
---|---|---|---|
FLC | 控制开花时间,开花抑制子 Control of flowering time, flowering suppressor | 除了茎尖,花前广泛存在于各组织,表达水平下降引起开花 Except shoot apex, widely expressed before flowering, download expression caused flowering | 禾谷类植物(小麦、大麦等)没有FLC类同源MADS-box基因 Cereal plants (wheat, barley, etc) have no FLC homologous genes |
SVP | 控制开花时间,开花抑制子 Control of flowering time, flowering suppressor | 花前主要存在于花序、花芽、叶的顶端分生组织 Apical meristem of inflorescence, buds, leaves before flowering | 大麦Barley:BM1、BM9、HvVRT2;小麦Wheat:TaVRT2 |
SOC1 | 控制开花时间 Control of flowering time | 茎尖分生组织、叶、花芽 Shoot apical meristem, leaves, flower buds | 油菜Brassica:LF、MF1、MF2 |
CAL | 调控花分生组织分化 Floral meristem identity | 花分生组织 Floral meristem | 与AP1是旁系同源 Paralogs of AP1 |
FUL | 控制开花时间,调控花分生组织分化果实发育 Control of flowering time, floral meristem identity, fruit development | 花序分生组织、胚珠、茎叶 Inflorescence meristem, ovules, cauline leaves | 与AP1是旁系同源 Paralogs of AP1 |
AGL24 | 控制开花时间,开花激活子 Control of flowering time, flowering activator | 花分生组织 Floral meristem | 与SVP是旁系同源 Paralogs of SVP |
AP1 | 调控花分生组织分化,A类基因,调控花萼和花瓣形成 Floral meristem identity, A-class homeotic gene, regulated sepals and petals | 整个花分生组织;第1、2轮花器官 Throughout floral meristem, whorls 1 and whorls 2 of floral organs | 金鱼草 Snapdragon:SQUA、DEFH28;水稻Rice:OsMADS14、OsMADS15、OsMADS18 |
AP3 | B类基因,调控花瓣和雄蕊形成 B-class homeotic gene, regulated petals and stamens | 第2、3轮花器官 Whorls 2 and whorls 3 of floral organs | 金鱼草 Snapdragon:DEF;矮牵牛Petunia:PhGLO1/2;水稻 Rice:OsMADS16;玉米 Maize:Si1 |
PI | B类基因,调控花瓣和雄蕊形成 B-class homeotic gene, regulated petals and stamens | 第2、3轮花器官 Whorls 2 and whorls 3 of floral organs | 金鱼草Snapdragon:GLO;矮牵牛Petunia:pMADS1、GP;水稻Rice:OsMADS2、OsMADS4 |
AG | C类基因,调控雄蕊和心皮形成 C-class homeotic gene, regulated stamens and carpels | 第3、4轮花器官 Whorls 3 and whorls 4 of floral organs | 金鱼草Snapdragon:FAR;矮牵牛Petunia:pMADS3;水稻Rice:OsMADS3;玉米Maize:ZAG1 |
SHP1/2 | D类基因,果实发育和开裂 D-class homeotic gene, fruit development and dehiscence | 胚珠、壳边、果实分裂区域 Ovules, valve margin, fruit dehiscence zone | 金鱼草Snapdragon:PLE;矮牵牛Petunia:FBP6 |
STK | D类基因,控制胚珠发育 D-class homeotic gene, regulated ovules development | 胚珠 Ovules | 矮牵牛Petunia:FBP7、FBP11;水稻 Rice:OsMADS13、OsMADS21 |
SEP1/2/3/4 | E类基因,花器官发育辅助因子,调控激活B、C类基因 E-class homeotic gene, co-regulated floral development, activated B-and C-class genes | SEP1/2:4轮花器官;SEP3:第2-3轮花器官;SEP4:第1轮花器官 SEP1/2: all whorls of floral organs; SEP3: whorls 2 and whorls 3; SEP4: whorls 1 | 矮牵牛Petunia:FBP2;番茄Tomato:TM5;水稻Rice:OsMADS1 |
表1 MADS-box基因及其功能[2,14,16-18]
Table 1 MADS-box genes and their functions
基因 Gene | 功能 Function | 表达模式 Expression pattern | 同源基因 Homologous gene |
---|---|---|---|
FLC | 控制开花时间,开花抑制子 Control of flowering time, flowering suppressor | 除了茎尖,花前广泛存在于各组织,表达水平下降引起开花 Except shoot apex, widely expressed before flowering, download expression caused flowering | 禾谷类植物(小麦、大麦等)没有FLC类同源MADS-box基因 Cereal plants (wheat, barley, etc) have no FLC homologous genes |
SVP | 控制开花时间,开花抑制子 Control of flowering time, flowering suppressor | 花前主要存在于花序、花芽、叶的顶端分生组织 Apical meristem of inflorescence, buds, leaves before flowering | 大麦Barley:BM1、BM9、HvVRT2;小麦Wheat:TaVRT2 |
SOC1 | 控制开花时间 Control of flowering time | 茎尖分生组织、叶、花芽 Shoot apical meristem, leaves, flower buds | 油菜Brassica:LF、MF1、MF2 |
CAL | 调控花分生组织分化 Floral meristem identity | 花分生组织 Floral meristem | 与AP1是旁系同源 Paralogs of AP1 |
FUL | 控制开花时间,调控花分生组织分化果实发育 Control of flowering time, floral meristem identity, fruit development | 花序分生组织、胚珠、茎叶 Inflorescence meristem, ovules, cauline leaves | 与AP1是旁系同源 Paralogs of AP1 |
AGL24 | 控制开花时间,开花激活子 Control of flowering time, flowering activator | 花分生组织 Floral meristem | 与SVP是旁系同源 Paralogs of SVP |
AP1 | 调控花分生组织分化,A类基因,调控花萼和花瓣形成 Floral meristem identity, A-class homeotic gene, regulated sepals and petals | 整个花分生组织;第1、2轮花器官 Throughout floral meristem, whorls 1 and whorls 2 of floral organs | 金鱼草 Snapdragon:SQUA、DEFH28;水稻Rice:OsMADS14、OsMADS15、OsMADS18 |
AP3 | B类基因,调控花瓣和雄蕊形成 B-class homeotic gene, regulated petals and stamens | 第2、3轮花器官 Whorls 2 and whorls 3 of floral organs | 金鱼草 Snapdragon:DEF;矮牵牛Petunia:PhGLO1/2;水稻 Rice:OsMADS16;玉米 Maize:Si1 |
PI | B类基因,调控花瓣和雄蕊形成 B-class homeotic gene, regulated petals and stamens | 第2、3轮花器官 Whorls 2 and whorls 3 of floral organs | 金鱼草Snapdragon:GLO;矮牵牛Petunia:pMADS1、GP;水稻Rice:OsMADS2、OsMADS4 |
AG | C类基因,调控雄蕊和心皮形成 C-class homeotic gene, regulated stamens and carpels | 第3、4轮花器官 Whorls 3 and whorls 4 of floral organs | 金鱼草Snapdragon:FAR;矮牵牛Petunia:pMADS3;水稻Rice:OsMADS3;玉米Maize:ZAG1 |
SHP1/2 | D类基因,果实发育和开裂 D-class homeotic gene, fruit development and dehiscence | 胚珠、壳边、果实分裂区域 Ovules, valve margin, fruit dehiscence zone | 金鱼草Snapdragon:PLE;矮牵牛Petunia:FBP6 |
STK | D类基因,控制胚珠发育 D-class homeotic gene, regulated ovules development | 胚珠 Ovules | 矮牵牛Petunia:FBP7、FBP11;水稻 Rice:OsMADS13、OsMADS21 |
SEP1/2/3/4 | E类基因,花器官发育辅助因子,调控激活B、C类基因 E-class homeotic gene, co-regulated floral development, activated B-and C-class genes | SEP1/2:4轮花器官;SEP3:第2-3轮花器官;SEP4:第1轮花器官 SEP1/2: all whorls of floral organs; SEP3: whorls 2 and whorls 3; SEP4: whorls 1 | 矮牵牛Petunia:FBP2;番茄Tomato:TM5;水稻Rice:OsMADS1 |
图2 花器官发育模型[34,35,36] a,不同层面阐释花发育模型:基因层面为“ABC(D)E模型”——花萼:A类基因调控;花瓣:A+B类基因调控;雄蕊:B+C类基因调控;雌蕊:C类基因单独调控;胚珠:D类基因调控(包括部分C类基因调控);E类基因对所有花器官形成起辅助调控。蛋白层面为“四聚体模型”,由同源或异源二聚体蛋白再聚合形成四聚体——花萼:AP1-SEP-AP1-SEP;花瓣:AP3-PI-SEP-AP1;雄蕊:AP3-PI-SEP-AG;雌蕊:AG-SEP-AG-SEP;胚珠:AG-SEP-SHP-STK。b,单子叶百合科中B类基因覆盖前3轮,导致花萼瓣化。c,毛茛纲部分植物中B类基因只在花瓣中表达。(注: AP2基因不属于MADS-box基因,其他ABCDE类基因均为MADS-box基因。)
Fig.2 Floral organ development models a, Interpreted floral development models at different levels. “The ABC(D)E model” was at genes level. Sepals: A-class genes alone specified; Petals: A-and B-class genes combined to specified; Stamens: B-and C-class genes combined to specified; Carpels: C-class genes alone specified; Ovules: D-class genes specified (partially involved C-class genes); E-class genes were required to co-regulated the formation of floral organs. “The quartet model” was at proteins level. Tetramers were formed by homodimer or heterodimer. Sepals: AP1-SEP-AP1-SEP; Petals: AP3-PI-SEP-AP1; Stamens: AP3-PI-SEP-AG; Carpels: AG-SEP-AG-SEP; Ovules: AG-SEP-SHP-STK. b, Petaloid sepals in Liliaceae of monocotyledon resulted as B-class gene covered the first three whorls. c, B-class genes were expressed only in parts of the petals in some Ranunculus. AP2 gene was not a MADS-box gene, the other ABCDE genes were all MADS-box genes.
图3 MADS-box基因调控花发育网络、花发育过程和相关基因[14,20,21,28,43-45] →表示调控具有促进作用;─┤表示调控具有抑制作用;─表示已经研究确定的调控路径;-----表示未确定的调控路径;*表示该基因不是MADS-box基因;未标记的基本均为MADS-box基因。
Fig.3 MADS-box genes regulate floral development network, floral development processes and related genes →indicated acceleration; ─┤indicated inhibition; ─ represent this regulatory path has been studied;-----represent an unspecified regulatory path; * meant the gene was not a MADS-box gene; Genes unmarked were all MADS-box genes.
[1] |
THEIEN G. Development of floral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001,4(1):75-85.
DOI URL |
[2] | 许智宏, 种康. 植物细胞分化与器官发生[M]. 北京: 科学出版社, 2015: 217-270. |
[3] | KIM S H, MIZUNO K, FUJIMURA T. Isolation of MADS-box genes from sweet potato [Ipomoea batatas(L.) Lam.]expressed specifically in vegetative tissues[J]. Plant & Cell Physiology, 2002,43(3):314-322. |
[4] |
ZHAO H B, JIA H M, WANG Y, et al. Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra)[J]. Gene, 2019,717:144045.
DOI URL |
[5] |
SCHWARZ-SOMMER Z, HUIJSER P, NACKEN W, et al. Genetic control of flower development by homeotic genes in Antirrhinum majus[J]. Science, 1990,250(4983):931-936.
DOI URL |
[6] | 严海燕. 植物发育分子生物学[M]. 北京: 科学出版社, 2012: 147-177. |
[7] |
ALVAREZ-BUYLLA E R, PELAZ S, LILJEGREN S J, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proceedings of the National Academy of Sciences, 2000,97(10):5328-5333.
DOI URL |
[8] |
LAI X L, DAHER H, GALIEN A, et al. Structural basis for plant MADS transcription factor oligomerization[J]. Computational and Structural Biotechnology Journal, 2019,17:946-953.
DOI URL |
[9] |
BEMER M, HEIJMANS K, AIROLDI C, et al. An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis[J]. Plant Physiology, 2010,154(1):287-300.
DOI URL |
[10] |
MASIERO S, COLOMBO L, GRINI P E, et al. The emerging importance of type I MADS box transcription factors for plant reproduction[J]. The Plant Cell, 2011,23(3):865-872.
DOI URL |
[11] |
KANG I H, STEFFEN J G, PORTEREIKO M F, et al. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis[J]. The Plant Cell, 2008,20(3):635-647.
DOI URL |
[12] |
ZHANG Y T, TANG D Q, LIN X C, et al. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering[J]. BMC Plant Biology, 2018,18(1):1-18.
DOI URL |
[13] | RIECHMANN J L, MEYEROWITZ E M. MADS domain proteins in plant development[J]. Biological Chemistry, 1997,378(10):1079-1101. |
[14] | THEIEN G, GRAMZOW L. Structure and evolution of plant MADS domain transcription factors[M]//Plant transcription factors. Amsterdam: Elsevier, 2016: 127-138. |
[15] |
BECKER A, THEIßEN G . The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003,29(3):464-489.
DOI URL |
[16] |
SRI T, GUPTA B, TYAGI S, et al. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters[J]. Molecular Phylogenetics and Evolution, 2020,147:106777.
DOI URL |
[17] |
KONG L, DUAN Y L, YE Y F, et al. Screening and analysis of proteins interacting with OsMADS16 in rice (Oryza sativa L.)[J]. PLoS One, 2019,14(8):e0221473.
DOI URL |
[18] | XIE L, ZHANG Y, WANG K, et al. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat[J]. New Phytologist, 2019:16339. |
[19] |
CHANDLER J W. Founder cell specification[J]. Trends in Plant Science, 2011,16(11):607-613.
DOI URL |
[20] |
SHARMA N, RUELENS P, D’HAUW M , et al. A flowering locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat[J]. Plant Physiology, 2017,173(2):1301-1315.
DOI URL |
[21] |
SHARMA N, GEUTEN K, GIRI B S, et al. The molecular mechanism of vernalization in Arabidopsis and cereals: role of FLOWERING LOCUS C and its homologs[J]. Physiologia Plantarum, 2020,170(3):373-383.
DOI URL |
[22] |
LI Z C, JIANG D H, HE Y H. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production[J]. Nature Plants, 2018,4(10):836-846.
DOI URL |
[23] |
LI Z C, OU Y, ZHANG Z C, et al. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis[J]. Molecular Plant, 2018,11(9):1135-1146.
DOI URL |
[24] |
HONG J K, PARK S R, SUH E J, et al. Effects of overexpression of Brassica rapa SHORT VEGETATIVE PHASE gene on flowering time[J]. Korean Journal of Breeding Science, 2020,52(3):244-251.
DOI URL |
[25] |
LIU X, SUN Z C, DONG W, et al. Expansion and functional divergence of the SHORT VEGETATIVE PHASE(SVP) genes in eudicots[J]. Genome Biology and Evolution, 2018,10(11):3026-3037.
DOI URL |
[26] |
LIU H R, LI G, YANG X J, et al. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence[J]. The Crop Journal, 2020,8(1):71-86.
DOI URL |
[27] |
CHAE E, TAN Q K G, HILL T A, et al. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development[J]. Development (Cambridge, England), 2008,135(7):1235-1245.
DOI URL |
[28] |
LEE J, OH M, PARK H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY[J]. The Plant Journal, 2008,55(5):832-843.
DOI URL |
[29] | TORTI S, FORNARA F. AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition[J]. Plant Signaling & Behavior, 2012,7(10):1251-1254. |
[30] | GOSLIN K, ZHENG B B, SERRANO-MISLATA A, et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation[J]. Plant Physiology, 2017,174(2):1097-1109. |
[31] |
PABÓN-MORA N, AMBROSE B A, LITT A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiology, 2012,158(4):1685-1704.
DOI URL |
[32] |
HILL K, WANG H, PERRY S E. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components[J]. The Plant Journal, 2008,53(1):172-185.
DOI URL |
[33] |
AGLIASSA C, NARAYANA R, BERTEA C M, et al. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes[J]. Bioelectromagnetics, 2018,39(5):361-374.
DOI URL |
[34] | YIFENG X, NATHANAëL P, ENG‐SENG G, et al. SUPERMAN regulates floral whorl boundaries through control of auxin biosynjournal[J]. The EMBO journal, 2018,37(11):e97499. |
[35] |
OTANI M, AOYAGI K, NAKANO M. Suppression of B function by chimeric repressor gene-silencing technology (CRES-T) reduces the petaloid tepal identity in transgenic Lilium sp[J]. PLoS One, 2020,15(8):e0237176.
DOI URL |
[36] |
KRAMER E M, DORIT R L, IRISH V F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages[J]. Genetics, 1998,149(2):765-783.
DOI URL |
[37] |
ZHOU Y Z, XU Z D, YONG X, et al. SEP-class genes in Prunus mume and their likely role in floral organ development[J]. BMC Plant Biology, 2017,17(1):1-11.
DOI URL |
[38] |
GIOPPATO H A, DORNELAS M C. When Bs are better than As: the relationship between B-class MADS-box gene duplications and the diversification of perianth morphology[J]. Tropical Plant Biology, 2019,12(1):1-11.
DOI URL |
[39] |
XIANG L, CHEN Y, CHEN L P, et al. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f[J]. Physiologia Plantarum, 2018,162(3):353-369.
DOI URL |
[40] |
JIANG Y C, WANG M M, ZHANG R, et al. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea(Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals[J]. New Phytologist, 2020,227(4):1235-1248.
DOI URL |
[41] |
HUANG F Y, ZHANG Y H, HOU X L . BcAP3, a MADS box gene, controls stamen development and male sterility in Pak-choi (Brassica rapa ssp. chinensis)[J]. Gene, 2020,747:144698.
DOI URL |
[42] | 李芳. NAP家族成员克隆及其在桃果实发育与成熟期间的表达特性研究[D]. 杨凌: 西北农林科技大学, 2016. |
LI F. Cloning and expression characterization of NAP family members during development and ripening of peach[D]. Yangling: Northwest A & F University, 2016. (in Chinese with English abstract) | |
[43] |
PRUNET N. My favourite flowering image: an Arabidopsis inflorescence expressing fluorescent reporters for the APETALA3 and SUPERMAN genes[J]. Journal of Experimental Botany, 2019,70(21):e6499-e6501.
DOI URL |
[44] |
UEMURA A, YAMAGUCHI N, XU Y F, et al. Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis[J]. Plant Reproduction, 2018,31(1):89-105.
DOI URL |
[45] |
CHEN Z S, LIU X F, WANG D H, et al. Transcription factor OsTGA10 is a target of the MADS protein OsMADS8 and is required for tapetum development[J]. Plant Physiology, 2018,176(1):819-835.
DOI URL |
[46] | 黄海娇, 李慧玉, 姜静. BpAP1转基因白桦中开花相关基因的时序表达[J]. 东北林业大学学报, 2017,45(1):1-6. |
HUANG H J, LI H Y, JIANG J. Quantitative expression analysis of several flowering-related genes in BpAP1 transgenic birch(Betula platyphylla × Betula pendula)[J]. Journal of Northeast Forestry University, 2017,45(1):1-6.(in Chinese with English abstract) | |
[47] | 袁秀云, 许申平, 王莹博, 等. 蝴蝶兰PhalPI基因的克隆及在花器官突变体中的表达分析[J]. 植物研究, 2017,37(3):416-423. |
YUAN X Y, XU S P, WANG Y B, et al. Cloning of PhalPI gene from Phalaenopsis and its expression in floral organ mutants[J]. Bulletin of Botanical Research, 2017,37(3):416-423.(in Chinese with English abstract) | |
[48] |
CHEN, MAO, HUANG, et al. Morphological characterization of flower buds development and related gene expression profiling at bud break stage in heterodichogamous Cyclocarya paliurus(Batal.) lljinskaja[J]. Genes, 2019,10(10):818.
DOI URL |
[49] | SHULGA O A, MITIOUCHKINA T Y, SHCHENNIKOVA A V, et al. Chrysanthemum modification via ectopic expression of sunflower MADS-box gene HAM59[J]. Acta Horticulturae, 2015: 105-111. |
[50] |
MOURADOV A, GLASSICK T V, HAMDORF B A, et al. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine[J]. Plant Physiology, 1998,117(1):55-62.
DOI URL |
[51] |
WINTER K U, BECKER A, MUNSTER T, et al. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants[J]. PNAS, 1999,96(13):7342-7347.
DOI URL |
[52] |
THANGAVEL G, NAYAR S. A survey of MIKC type MADS-box genes in non-seed plants: algae, bryophytes, lycophytes and ferns[J]. Frontiers in Plant Science, 2018,9:510.
DOI URL |
[53] |
MAO L, BEGUM D, CHUANG H W, et al. JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development[J]. Nature, 2000,406(6798):910-913.
DOI URL |
[54] |
GAN Y B, BERNREITER A, FILLEUR S, et al. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant and Cell Physiology, 2012,53(6):1003-1016.
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||