浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 781-789.DOI: 10.3969/j.issn.1004-1524.2022.04.14
李永梅1,2(), 王浩1,3,*(
), 赵勇3, 张立根4
收稿日期:
2021-06-28
出版日期:
2022-04-25
发布日期:
2022-04-28
通讯作者:
王浩
作者简介:
*王浩,E-mail: wanghao@iwhr.com基金资助:
LI Yongmei1,2(), WANG Hao1,3,*(
), ZHAO Yong3, ZHANG Ligen4
Received:
2021-06-28
Online:
2022-04-25
Published:
2022-04-28
Contact:
WANG Hao
摘要:
为探讨连续统去除法估算枸杞叶片含水率的潜力,以宁夏枸杞主栽品种宁杞7号为研究对象,采用自然失水法和烘干法测定枸杞叶片含水率,采用连续统去除法对原始光谱反射率进行处理,分析连续统去除光谱对含水率的响应特征,分析连续统去除光谱、吸收特征参数与叶片含水率的相关性,并建立枸杞叶片含水率估算模型。研究表明:连续统去除光谱能放大吸收谷波段对含水率的响应特征,1 100~2 200 nm波段光谱反射率对枸杞叶片水分变化的响应能力最强;连续统去除光谱在1 500~1 850 nm波段与叶片含水率之间的相关性得到增强;基于连续统去除光谱敏感波长和1 270~1 700 nm波段的吸收峰右面积建立的一元回归模型优于原始光谱敏感波长;基于900~1 100 nm波段的吸收峰右面积、1 270~1 700 nm波段的吸收峰右面积和1 100~1 270 nm波段的吸收峰总面积建立的多元回归模型估算效果最好,其模型R2=0.787 0,检验R2=0.800 3,均方根误差为0.683 3,平均相对误差为0.72%,可用来定量估算枸杞叶片含水率。
中图分类号:
李永梅, 王浩, 赵勇, 张立根. 基于连续统去除法的枸杞叶片含水率高光谱估算[J]. 浙江农业学报, 2022, 34(4): 781-789.
LI Yongmei, WANG Hao, ZHAO Yong, ZHANG Ligen. Hyperspectral estimation of leaf water content of Lycium barbarum based on continuum-removed method[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 781-789.
测定日期 Measurement date | 统计量 Statistical Sample | 极小值 Minimum/% | 极大值 Maximum/% | 均值 Mean value/% | 标准差 Standard deviation | 方差 Variance |
---|---|---|---|---|---|---|
6月8日上午Morning of June 8 | 5 | 53.161 | 60.247 | 57.088 | 2.579 | 6.651 |
6月8日下午Afternoon of June 8 | 5 | 42.373 | 48.168 | 44.461 | 2.338 | 5.466 |
6月9日上午Morning of June 9 | 5 | 22.371 | 27.253 | 23.676 | 2.066 | 4.267 |
6月10日下午Afternoon of June10 | 5 | 7.602 | 11.908 | 9.491 | 1.677 | 2.813 |
6月12日晚上Evening of June 12 | 5 | 3.698 | 4.698 | 4.183 | 0.389 | 0.151 |
表1 自然失水法测定的枸杞叶片含水率
Table 1 Water content of Lycium barbarum leaf measured by natural water loss method
测定日期 Measurement date | 统计量 Statistical Sample | 极小值 Minimum/% | 极大值 Maximum/% | 均值 Mean value/% | 标准差 Standard deviation | 方差 Variance |
---|---|---|---|---|---|---|
6月8日上午Morning of June 8 | 5 | 53.161 | 60.247 | 57.088 | 2.579 | 6.651 |
6月8日下午Afternoon of June 8 | 5 | 42.373 | 48.168 | 44.461 | 2.338 | 5.466 |
6月9日上午Morning of June 9 | 5 | 22.371 | 27.253 | 23.676 | 2.066 | 4.267 |
6月10日下午Afternoon of June10 | 5 | 7.602 | 11.908 | 9.491 | 1.677 | 2.813 |
6月12日晚上Evening of June 12 | 5 | 3.698 | 4.698 | 4.183 | 0.389 | 0.151 |
样本集 Sample set | 样本数量 Number of samples | 极小值 Minimum/% | 极大值 Maximum/% | 均值 Mean value/% | 标准差 Standard deviation | 方差 Variance |
---|---|---|---|---|---|---|
建模样本Modeling sample | 27 | 77.03 | 82.45 | 79.65 | 1. 53 | 1.92 |
检验样本Test sample | 10 | 77.95 | 81.49 | 79.54 | 1.19 | 1.5 |
表2 烘干法测定的枸杞叶片含水率
Table 2 Water content of Lycium barbarum leaf measured by drying method
样本集 Sample set | 样本数量 Number of samples | 极小值 Minimum/% | 极大值 Maximum/% | 均值 Mean value/% | 标准差 Standard deviation | 方差 Variance |
---|---|---|---|---|---|---|
建模样本Modeling sample | 27 | 77.03 | 82.45 | 79.65 | 1. 53 | 1.92 |
检验样本Test sample | 10 | 77.95 | 81.49 | 79.54 | 1.19 | 1.5 |
图3 不同含水率枸杞叶片的连续统去除光谱差值曲线与敏感性曲线
Fig.3 Continuum removal spectrum difference curveand sensitivities curve of Lycium barbarum leaves with different water content
光谱 Spectrum | 敏感波长 Sensitive wavelength/ nm | 模型Model | 验证模型Validation set | |||
---|---|---|---|---|---|---|
回归模型 Regression model | 决定系数 Determination coefficient | 决定系数 Determination coefficient | RMSE | MRE/% | ||
原始光谱Original spectrum | 1 620 | y=-31.581x+86.813 | 0.560 6 | 0.530 8 | 0.979 0 | 1.23 |
连续统去除光谱 | 1 602 | y=-21.611x+90.104 | 0.619 4 | 0.603 7 | 0.884 3 | 1.12 |
Continuum-removal spectrum | 1 662 | y=-19.751x+91.128 | 0.619 2 | 0.597 2 | 0.949 1 | 1.13 |
表3 基于敏感波长的枸杞叶片含水率估算回归模型
Table 3 Regression model for estimating leaf water content of Lycium barbarum leavesbase on sensitive wavelength
光谱 Spectrum | 敏感波长 Sensitive wavelength/ nm | 模型Model | 验证模型Validation set | |||
---|---|---|---|---|---|---|
回归模型 Regression model | 决定系数 Determination coefficient | 决定系数 Determination coefficient | RMSE | MRE/% | ||
原始光谱Original spectrum | 1 620 | y=-31.581x+86.813 | 0.560 6 | 0.530 8 | 0.979 0 | 1.23 |
连续统去除光谱 | 1 602 | y=-21.611x+90.104 | 0.619 4 | 0.603 7 | 0.884 3 | 1.12 |
Continuum-removal spectrum | 1 662 | y=-19.751x+91.128 | 0.619 2 | 0.597 2 | 0.949 1 | 1.13 |
参数parameters | 900~1100 nm | 1100~1270 nm | 1270~1700 nm | 1800~2200 nm |
---|---|---|---|---|
吸收波段波长Absorption band wavelength | 0.588** | 0.270 | 0.664** | 0.124 |
最大吸收深度Maximum band depth | -0.487* | -0.628** | -0.658** | 0.335 |
吸收峰总面积Absorption peak area | -0.364 | -0.640** | -0.742** | -0.342 |
吸收峰左面积Absorption peak left area | 0.583* | -0.188 | -0.498* | 0.127 |
吸收峰右面积Absorption peak right area | -0.599** | -0.443* | -0.778** | -0.379 |
对称度Symmetry | 0.592** | 0.306 | 0.760** | 0.348 |
面积归一化最大吸收深度 | -0.488* | -0.621** | -0.594** | 0.413 |
Area normalized maximum absorption depth |
表4 光谱吸收特征参数与叶片含水率的相关系数
Table 4 Correlation coefficients between leaves water content and spectrum absorption parameters
参数parameters | 900~1100 nm | 1100~1270 nm | 1270~1700 nm | 1800~2200 nm |
---|---|---|---|---|
吸收波段波长Absorption band wavelength | 0.588** | 0.270 | 0.664** | 0.124 |
最大吸收深度Maximum band depth | -0.487* | -0.628** | -0.658** | 0.335 |
吸收峰总面积Absorption peak area | -0.364 | -0.640** | -0.742** | -0.342 |
吸收峰左面积Absorption peak left area | 0.583* | -0.188 | -0.498* | 0.127 |
吸收峰右面积Absorption peak right area | -0.599** | -0.443* | -0.778** | -0.379 |
对称度Symmetry | 0.592** | 0.306 | 0.760** | 0.348 |
面积归一化最大吸收深度 | -0.488* | -0.621** | -0.594** | 0.413 |
Area normalized maximum absorption depth |
参数 Parameter | 波长 Wavelength/ nm | 模型建立Model establishment | 模型验证Validation test | |||
---|---|---|---|---|---|---|
回归模型 Regression model | 决定系数 Determination coefficient | 决定系数 Determination coefficient | RMSE | MRE/% | ||
RA | 900~1 100 | y=-0.157 3x+98.404 | 0.358 7 | 0.159 3 | 1.245 4 | 1.96 |
TA | 1 100~1 270 | y=-0.504 2x+159.38 | 0.409 3 | 0.403 2 | 1.050 3 | 1.44 |
RA | 1 270~1 700 | y=-0.199 2x+109.44 | 0.620 2 | 0.606 0 | 0.882 8 | 1.00 |
RA | 900~1 100 | y=-0.122x1-0.139x2-0.132x3+135.494 | 0.787 0 | 0.800 3 | 0.683 3 | 0.72 |
RA | 1 270~1 700 | |||||
TA | 1 100~1 270 |
表5 基于吸收特征参数的枸杞叶片含水率估算回归模型
Table 5 Regression model for estimating water content of Lycium barbarum leaf base on spectrum absorption parameters
参数 Parameter | 波长 Wavelength/ nm | 模型建立Model establishment | 模型验证Validation test | |||
---|---|---|---|---|---|---|
回归模型 Regression model | 决定系数 Determination coefficient | 决定系数 Determination coefficient | RMSE | MRE/% | ||
RA | 900~1 100 | y=-0.157 3x+98.404 | 0.358 7 | 0.159 3 | 1.245 4 | 1.96 |
TA | 1 100~1 270 | y=-0.504 2x+159.38 | 0.409 3 | 0.403 2 | 1.050 3 | 1.44 |
RA | 1 270~1 700 | y=-0.199 2x+109.44 | 0.620 2 | 0.606 0 | 0.882 8 | 1.00 |
RA | 900~1 100 | y=-0.122x1-0.139x2-0.132x3+135.494 | 0.787 0 | 0.800 3 | 0.683 3 | 0.72 |
RA | 1 270~1 700 | |||||
TA | 1 100~1 270 |
[1] | 郭建茂, 高云峰, 李淑婷, 等. 基于多角度高光谱遥感的冬小麦叶片含水率估算模型[J]. 安徽农业大学学报, 2019, 46(1): 124-132. |
GUO J M, GAO Y F, LI S T, et al. Estimation model of leaf water content of winter wheat based on multi-angle hyperspectral remote sensing[J]. Journal of Anhui Agricultural University, 2019, 46(1): 124-132. (in Chinese with English abstract) | |
[2] |
HASSANLI A M, AHMADIRAD S, BEECHAM S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency[J]. Agricultural Water Management, 2010, 97(2): 357-362.
DOI URL |
[3] | 冀荣华, 郑立华, 邓小蕾, 等. 基于反射光谱的苹果叶片叶绿素和含水率预测模型[J]. 农业机械学报, 2014, 45(8): 269-275. |
JI R H, ZHENG L H, DENG X L, et al. Forecasting chlorophyll content and moisture of apple leaves in different tree growth period based on spectral reflectance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 269-275. (in Chinese with English abstract) | |
[4] | 张玮, 王鑫梅, 潘庆梅, 等. 雷竹冠层叶片反射光谱特征及其对叶片水分变化的响应[J]. 林业科学研究, 2019, 32(3): 73-79. |
ZHANG W, WANG X M, PAN Q M, et al. Spectral reflectance characteristics of Phyllostachys violascens canopy leaves in response to water change[J]. Forest Research, 2019, 32(3): 73-79. (in Chinese with English abstract) | |
[5] | 李粉玲, 常庆瑞. 基于连续统去除法的冬小麦叶片全氮含量估算[J]. 农业机械学报, 2017, 48(7): 174-179. |
LI F L, CHANG Q R. Estimation of winter wheat leaf nitrogen content based on continuum removed spectra[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 174-179. (in Chinese with English abstract) | |
[6] | 贾雯晴. 基于高光谱的小麦水分状况监测研究[D]. 南京: 南京农业大学, 2013. |
JIA W Q. Monitoring water status based on hyperspectra in wheat[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract) | |
[7] | 梁亮, 张连蓬, 林卉, 等. 基于导数光谱的小麦冠层叶片含水量反演[J]. 中国农业科学, 2013, 46(1): 18-29. |
LIANG L, ZHANG L P, LIN H, et al. Estimating canopy leaf water content in wheat based on derivative spectra[J]. Scientia Agricultura Sinica, 2013, 46(1): 18-29. (in Chinese with English abstract) | |
[8] | 潘庆梅, 张劲松, 张俊佩, 等. 不同品种核桃叶片含水量与高光谱反射率的相关性差异分析[J]. 林业科学研究, 2019, 32(6): 1-6. |
PAN Q M, ZHANG J S, ZHANG J P, et al. Analysis of correlation and differences between leaf moisture and hyperspectral reflectance among different walnut varieties[J]. Forest Research, 2019, 32(6): 1-6. (in Chinese with English abstract) | |
[9] | 曹晓兰, 邓梦洁, 汪佩佩. 基于PLSR的苎麻叶片含水量估测模型建立及优化[J]. 激光生物学报, 2018, 27(5): 467-473. |
CAO X L, DENG M J, WANG P P. Buildling and optimizing of the PLSR-based estimation model on ramie leaf’s water content[J]. Acta Laser Biology Sinica, 2018, 27(5): 467-473. (in Chinese with English abstract) | |
[10] | 李永梅, 张学俭. 基于光谱指数的枸杞叶片水分含量遥感监测研究[J]. 地理与地理信息科学, 2019, 35(5): 16-21. |
LI Y M, ZHANG X J. Remote sensing monitoring of leaf water content in Lycium barbarum based on spectral index[J]. Geography and Geo-Information Science, 2019, 35(5): 16-21. (in Chinese with English abstract) | |
[11] | 吾木提·艾山江, 买买提·沙吾提, 尼加提·卡斯木, 等. 基于灰色关联法的春小麦叶片含水量高光谱估测模型研究[J]. 光谱学与光谱分析, 2018, 38(12): 3905-3911. |
UMUT H, MAMAT S, NIJAT K, et al. Hyperspectral estimation model of leaf water content in spring wheat based on grey relational analysis[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3905-3911. (in Chinese with English abstract) | |
[12] | 李珺, 宋文龙. 基于光谱反射特征的草莓叶片含水率模型[J]. 东北林业大学学报, 2016, 44(1): 72-74, 80. |
LI J, SONG W L. Water content model for strawberry leaves with spectral signature[J]. Journal of Northeast Forestry University, 2016, 44(1): 72-74, 80. (in Chinese with English abstract) | |
[13] |
SEELIG H D, HOEHN A, STODIECK L S, et al. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared[J]. International Journal of Remote Sensing, 2008, 29(13): 3701-3713.
DOI URL |
[14] | 贾方方, 洪权春, 宋唯一. 基于去包络线法的番茄叶霉病发病程度估测方法[J]. 中国生态农业学报, 2017, 25(6): 805-811. |
JIA F F, HONG Q C, SONG W Y. Continuum removal method for monitoring Fulvia fulva morbidity using hyperspectral data[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 805-811. (in Chinese with English abstract) | |
[15] | 竞霞, 王纪华, 宋晓宇, 等. 棉花黄萎病病情严重度的连续统去除估测法[J]. 农业工程学报, 2010, 26(1): 193-198. |
JING X, WANG J H, SONG X Y, et al. Continuum removal method for cotton verticillium wilt severity monitoring with hyperspectraldata[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 193-198. (in Chinese with English abstract) | |
[16] | 张雪红, 田庆久. 基于连续统去除法的冬小麦叶片氮积累量的高光谱评价[J]. 生态学杂志, 2010, 29(1): 181-186. |
ZHANG X H, TIAN Q J. Hyperspectral evaluation of nitrogen accumulation in winter wheat leaves based on continuum-removed method[J]. Chinese Journal of Ecology, 2010, 29(1): 181-186. (in Chinese with English abstract) | |
[17] |
张金恒. 基于连续统去除法的水稻氮素营养光谱诊断[J]. 植物生态学报, 2006, 30(1): 78-82.
DOI |
ZHANG J H. Rice nitrogen nutrition diagnosis using continuum-removed reflectance[J]. Journal of Plant Ecology, 2006, 30(1): 78-82. (in Chinese with English abstract) | |
[18] | 张雪红, 刘绍民, 何蓓蓓. 基于包络线消除法的油菜氮素营养高光谱评价[J]. 农业工程学报, 2008, 24(10): 151-155. |
ZHANG X H, LIU S M, HE B B. Hyperspectral evaluation of rape nitrogen nutrition using continuum-removed method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 151-155. (in Chinese with English abstract) | |
[19] | 韩兆迎, 朱西存, 王凌, 等. 基于连续统去除法的苹果树冠SPAD高光谱估测[J]. 激光与光电子学进展, 2016, 53(2): 023001. |
HAN Z Y, ZHU X C, WANG L, et al. Hyperspectral evaluation of SPAD value of apple tree canopy based on continuum-removed method[J]. Laser & Optoelectronics Progress, 2016, 53(2): 023001. (in Chinese with English abstract) | |
[20] | 郑煜, 常庆瑞, 王婷婷, 等. 基于连续统去除和偏最小二乘回归的油菜SPAD高光谱估算[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 37-45. |
ZHENG Y, CHANG Q R, WANG T T, et al. Hyperspectral estimation of SPAD value in oilseed rape based on continuum removal and partial least squares regression[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 37-45. (in Chinese with English abstract) | |
[21] | 林波, 杨玉静. 利用连续统去除方法遥感反演冠层水分含量的比较研究[J]. 气象研究与应用, 2012, 33(S1): 181-184. |
LIN B, YANG Y J. Comparison of remote sensing inversion of canopy water content using continuum removal methods[J]. Journal of Meteorological Research and Application, 2012, 33(S1): 181-184. (in Chinese) | |
[22] | 张佳华, 许云, 姚凤梅, 等. 植被含水量光学遥感估算方法研究进展[J]. 中国科学: 技术科学, 2010, 40(10): 1121-1129. |
ZHANG J H, XU Y, YAO F M, et al. Advances in estimation methods of vegetation water content based on optical remote sensing techniques[J]. Scientia Sinica(Technologica), 2010, 40(10): 1121-1129. (in Chinese) | |
[23] |
JACQUEMOUD S, USTIN S L, VERDEBOUT J, et al. Estimating leaf biochemistry using the PROSPECT leaf optical properties model[J]. Remote Sensing of Environment, 1996, 56(3): 194-202.
DOI URL |
[24] |
刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究: 以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861.
DOI |
LIU C, SUN P S, LIU S R. A comparison of spectral reflectance indices in response to water: a case study of Quercus aliena var. acuteserrata[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 850-861. (in Chinese with English abstract)
DOI URL |
[1] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[2] | 郭晗, 徐敏贤, 徐飞飞, 罗明, 陆洲, 张序. 基于机载高光谱数据的田间尺度胡敏酸含量估算[J]. 浙江农业学报, 2021, 33(12): 2358-2369. |
[3] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[4] | 钱家炜, 刘晓青, 张静静, 周卫红, 李建龙. 张家港市农田土壤重金属含量高光谱遥感监测模型构建[J]. 浙江农业学报, 2020, 32(8): 1437-1445. |
[5] | 陆锡昆, 罗亚辉, 蒋蘋, 胡文武. 基于高光谱的油茶籽含水量检测方法[J]. 浙江农业学报, 2020, 32(7): 1302-1310. |
[6] | 张小彦, 何静, 侯彩霞, 张树衡. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
[7] | 刘予煊, 程焕, 叶兴乾, 刘慧燕, 方海田. 不同菌株发酵枸杞汁中生物活性物质与香气组成物质含量变化[J]. 浙江农业学报, 2020, 32(3): 499-509. |
[8] | 禹文杰, 王彩霞, 乔芦, 王松磊, 贺晓光. 基于高光谱成像技术的泾源黄牛肉色度PLSR预测模型构建[J]. 浙江农业学报, 2020, 32(3): 527-533. |
[9] | 王念一, 于丰华, 许童羽, 杜文, 郭忠辉, 张国圣. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2): 359-366. |
[10] | 宋春雨, 甘淑, 袁希平, 胡琳, 李雁, 闫馨方. 滇中典型乔木植被高光谱特征[J]. 浙江农业学报, 2020, 32(11): 1978-1986. |
[11] | 方向, 金秀, 朱娟娟, 李绍稳. 基于可见-近红外光谱预处理建模的土壤速效氮含量预测[J]. 浙江农业学报, 2019, 31(9): 1523-1530. |
[12] | 孟庆龙, 张艳, 尚静. 基于高光谱成像的猕猴桃表面疤痕无损识别[J]. 浙江农业学报, 2019, 31(8): 1372-1378. |
[13] | 王美玲, 焦琳琳, 王晓红, 吴兵, 肖星星. 曹妃甸湿地典型植被光谱特征差异性分析[J]. 浙江农业学报, 2019, 31(6): 963-969. |
[14] | 王彦翔, 张艳, 杨成娅, 孟庆龙, 尚静. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
[15] | 孟幼青, 翁海勇, 岑海燕, 李红叶, 何勇. 潜伏期柑橘黄龙病宿主糖代谢及近红外光谱特征[J]. 浙江农业学报, 2019, 31(3): 428-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||