浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2121-2131.DOI: 10.3969/j.issn.1004-1524.2022.10.06
李芳1(), 刘霞1, 黄政2, 何应琴1, 宋勤飞1, 牛素贞*(
)
收稿日期:
2021-11-18
出版日期:
2022-10-25
发布日期:
2022-10-26
通讯作者:
牛素贞
作者简介:
*牛素贞,E-mail: niusuzhen@163.com基金资助:
LI Fang1(), LIU Xia1, HUANG Zheng2, HE Yingqin1, SONG Qinfei1, NIU Suzhen*(
)
Received:
2021-11-18
Online:
2022-10-25
Published:
2022-10-26
Contact:
NIU Suzhen
摘要:
为探究大厂茶P113叶色随季节变换的规律,为特异茶树种质资源鉴定与开发奠定研究基础,以茶树新品种大厂茶紫化植株P113为材料,采用三重四级杆质谱多反应监测模式(multiple reaction monitoring,MRM)对其春季、夏季和秋季的一芽二叶新梢进行黄酮类代谢物鉴定。结果显示,共检测到165个黄酮类物质的离子峰,包括正离子峰71个,负离子峰94个,包含花青素(6.06%)、双黄酮(2.42%)、查尔酮(0.6%)、二氢黄酮(4.24%)、二氢黄酮醇(3.03%)、黄烷醇类(9.70%)、黄酮(26.67%)、黄酮碳糖苷(4.24%)、黄酮醇(26.67%)、异黄酮(2.42%)、原花青素(7.88%)和单宁(6.06%)共12种黄酮类物质。主成分分析(PCA)显示,春季、夏季和秋季之间的代谢物含量变异较大,季节内的代谢物含量变异较小,说明黄酮类物质在季节变换过程中发生了显著的动态变化。韦恩分析显示:春季与夏季有158个代谢物共有,夏季与秋季有160个代谢物共有,春季与秋季有157个代谢物共有;春季有2个特有代谢物,为异橙黄酮和3,5,6,7,8,3',4'-七甲氧基黄酮,夏季和秋季均没有特有代谢物,总体上大部分黄酮类代谢物在每一个时期都有表达。相关性分析显示,花青素含量与二氢黄酮醇、黄酮、黄酮碳糖苷、黄酮醇、原花青素类含量呈正相关,与双黄酮、查尔酮、二氢黄酮、黄烷醇类、单宁类含量呈负相关。因此,推测大厂茶P113的叶色紫化与黄酮类物质含量,尤其是花青素含量变化有着密切的关系。
中图分类号:
李芳, 刘霞, 黄政, 何应琴, 宋勤飞, 牛素贞. 代谢组学解析大厂茶P113叶色变化规律[J]. 浙江农业学报, 2022, 34(10): 2121-2131.
LI Fang, LIU Xia, HUANG Zheng, HE Yingqin, SONG Qinfei, NIU Suzhen. Change regularity of leaf color of tea plant P113 (Camellia tachangensis F. C. Zhang) by metabolomics[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2121-2131.
图3 主成分分析得分 A、B、C分别代表春、夏、秋各时期的样本。主成分所占比例越大,代表该主成分区分样本的可信度越大。
Fig.3 Score of principal component analysis A, B and C represented samples in spring, summer and autumn, respectively. The greater the proportion of principal component, the greater the reliability of the sub sample representing the principal component.
图5 不同季节样本间的韦恩图 A、B和C代表春季、夏季和秋季。不同颜色的圈表示不同季节的代谢物集合,重叠的圈表示不同季节的相同代谢物,数字表示代谢物数量。
Fig.5 Venn diagram between samples in different seasons A, B and C represented spring, summer and autumn. Circles of different colors represented the collection of metabolites in different seasons, and overlapping circles represented the same metabolites in different seasons, and the number indicated the number of metabolites.
图6 不同季节黄酮类物质的表达量图A中所有柱状图的纵坐标表示峰值归一化后的值(Fold change),横坐标A、B、C分别表示春、夏、秋;图B中纵坐标表示代谢物名称,横坐标表示峰值归一化后的值,不同的颜色表示不同的季节。
Fig.6 Expression of flavonoid in different seasons The ordinate of all histograms in figure A represented the normalized value of the peak (Fold change), and the abscissa A, B and C represented spring, summer and autumn, respectively; In figure B, the ordinate represented the metabolite name, the abscissa represented the peak normalized value, and different colors represented different seasons.
图7 不同类别代谢物之间的相关性热图右侧和下侧为代谢物类别名称,左侧和上侧为样本聚类树,左上角图例是不同r值的颜色区间,颜色越红,表示代谢物间的相关性越大,颜色越蓝,表示代谢物间的相关性越小。
Fig.7 Heat map of correlation between different categories of metabolites The right and lower sides were metabolite category names, the left and upper sides were sample clustering trees, and the legend in the upper left corner was the color range of different r values. The redder the color, the greater the correlation between metabolites, and the bluer the color, the smaller the correlation between metabolites.
[1] | 虞富莲. 论茶树原产地和起源中心[J]. 茶叶科学, 1986, 6(1): 1-8. |
YU F L. Discussion on the originating place and the originating center of tea plant[J]. Journal of Tea Science, 1986, 6(1): 1-8. (in Chinese with English abstract) | |
[2] | 谢孝明, 罗以洪. 中国茶树原产地中心新论[J]. 茶叶通讯, 2021, 48(3): 385-391. |
XIE X M, LUO Y H. New view on the origin center of tea tree in China[J]. Journal of Tea Communication, 2021, 48(3): 385-391. (in Chinese with English abstract) | |
[3] |
张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372.
DOI |
ZHANG W J, RONG J, WEI C L, et al. Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. (in Chinese with English abstract)
DOI |
|
[4] | 朱永兴, 姜爱芹. 咖啡、可可和茶的全球发展比较研究[J]. 茶叶科学, 2010, 30(6): 493-500. |
ZHU Y X, JIANG A Q. Comparation on the development of coffee, cocoa and tea of the world[J]. Journal of Tea Science, 2010, 30(6): 493-500. (in Chinese with English abstract) | |
[5] | 杨兴荣, 矣兵, 李友勇, 等. 紫芽茶树种质资源主要生化成分差异性分析[J]. 山东农业科学, 2015, 47(12): 14-19. |
YANG X R, YI B, LI Y Y, et al. Analysis on differences of major biochemical components of purple-bud tea tree germplasm resources[J]. Shandong Agricultural Sciences, 2015, 47(12): 14-19. (in Chinese with English abstract) | |
[6] | 念波, 段双梅, 石兴云, 等. 6个红紫芽茶14种化学成分含量测定比较[J]. 食品工业, 2020, 41(2): 189-193. |
NIAN B, DUAN S M, SHI X Y, et al. Determination of the contents of 14 components in 6 purple tea shoots[J]. The Food Industry, 2020, 41(2): 189-193. (in Chinese with English abstract) | |
[7] | 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015. |
LI N N. Physiological, biochemical characteristics and molecular albinism of the albino tea(Camellia sinensis) plant[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[8] | 徐吉祥, 陆望星, 代风玲. 紫芽茶内含成分研究进展与展望[J]. 南方农业, 2018, 12(28): 35-37. |
XU J X, LU W X, DAI F L. Research progress and prospect of components in purple bud-tea[J]. South China Agriculture, 2018, 12(28): 35-37. (in Chinese) | |
[9] | 黄一泓, 刘雅莉, 武文斌, 等. 藏红花花瓣体外抗氧化活性部位的筛选与研究[J]. 天然产物研究与开发, 2013, 25(11): 1489-1493. |
HUANG Y H, LIU Y L, WU W B, et al. Bioactivity-guided fractionation of petals of Crocus sativus and their antioxidant activity investigation[J]. Natural Product Research and Development, 2013, 25(11): 1489-1493. (in Chinese with English abstract) | |
[10] | 陈亚峥, 陈伟文, 曾海文, 等. 原花青素B2对脓毒症大鼠心肌损伤的作用[J]. 中国临床药理学杂志, 2021, 37(20): 2826-2829. |
CHEN Y Z, CHEN W W, ZENG H W, et al. Effect of procyanidin B2 on myocardial injury in septic rats[J]. The Chinese Journal of Clinical Pharmacology, 2021, 37(20): 2826-2829. (in Chinese with English abstract) | |
[11] |
PATTANANANDECHA T, APICHAI S, SIRILUN S, et al. Anthocyanin profile, antioxidant, anti-inflammatory, and antimicrobial against foodborne pathogens activities of purple rice cultivars in northern Thailand[J]. Molecules (Basel, Switzerland), 2021, 26(17): 5234.
DOI URL |
[12] | 曾棋平, 杨丽娜, 吴坤林, 等. 紫茶多酚含量测定及其抗氧化活性研究[J]. 药学服务与研究, 2021, 21(3): 230-233. |
ZENG Q P, YANG L N, WU K L, et al. Determination of polyphenols in purple tea and study on its antioxidant activity[J]. Pharmaceutical Care and Research, 2021, 21(3): 230-233. (in Chinese)
DOI URL |
|
[13] | 方泽基. 黄山紫茶及其制作方法研究[J]. 现代农业科技, 2021(10): 215-217. |
FANG Z J. Study on Huangshan purple tea and its preparation method[J]. Modern Agricultural Science and Technology, 2021(10): 215-217. (in Chinese) | |
[14] | 杨纯婧, 谭礼强, 杨昌银, 等. 高花青素紫芽茶树新品种紫嫣[J]. 中国茶叶, 2020, 42(9): 8-11. |
YANG C J, TAN L Q, YANG C Y, et al. Anthocyanin-rich purple shoots tea cultivar Ziyan[J]. China Tea, 2020, 42(9): 8-11. (in Chinese with English abstract) | |
[15] | 袁景丽, 郑红丽, 梁先利, 等. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1847-1855. |
YUAN J L, ZHENG H L, LIANG X L, et al. Influence of anthocyanin biosynthesis on leaf and fiber color of Gossypium hirsutum L[J]. Scientia Agricultura Sinica, 2021, 54(9): 1847-1855. (in Chinese with English abstract) | |
[16] |
万东璞, 于卓, 吴燕民, 等. 花青素代谢调控植物彩叶研究进展[J]. 中国农业科技导报, 2020, 22(2): 30-38.
DOI |
WAN D P, YU Z, WU Y M, et al. Regulation of anthocyanin metabolism on colored leaves of plants[J]. Journal of Agricultural Science and Technology, 2020, 22(2): 30-38. (in Chinese with English abstract)
DOI |
|
[17] | 安然. 北美栎树叶色变化的生理基础及花青素积累的转录组学初探[D]. 泰安: 山东农业大学, 2020. |
AN R. Physiological basis of leaf coloration and transcriptomic analysis for anthocyanin accumulation in North American oak[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[18] | 汪力. 基于高通量测序的红花玉兰花青素苷合成途径研究[D]. 北京: 北京林业大学, 2019. |
WANG L. The study of anthocyanin biosynthesis pathway in Magnolia wufengensis based on the high-throughput RNA-seq[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
[19] | 邓素芳. 基于RNA-Seq的野生蕉(Musa itinerans)果皮颜色差异形成的分子机制研究[D]. 福州: 福建农林大学, 2018. |
DENG S F. Studies on the molecular mechanism of peel color difference formation based on RNA-seq in the wild banana(Musa itinerans)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese with English abstract) | |
[20] | 李芳, 范乔, 宋勤飞, 等. 66份优选贵州低热河谷茶树种质资源的系统评价[J/OL]. 分子植物育种:1-37. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20211011.1603.004.html. |
LI F, FAN Q, SONG Q F, et al. Systematic evaluation of 66 tea germplasm resources in low heat valley of Guizhou[J/OL]. Molecular Plant Breeding, 1-37.[2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20211011.1603.004.html. | |
[21] |
安红卫, 宋勤飞, 牛素贞. 贵州茶树种质资源遗传多样性、群体结构和遗传分化研究[J]. 浙江农业学报, 2021, 33(7): 1234-1243.
DOI |
AN H W, SONG Q F, NIU S Z. Study on genetic diversity, population structure and genetic differentiation of tea germplasm in Guizhou[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1234-1243. (in Chinese with English abstract) | |
[22] | 黄政, 李芳, 尹杰, 等. 贵州低热河谷地方茶树种质资源基于表型性状的遗传多样性分析[J/OL]. 分子植物育种, 1-28. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.s.20210702.1115.004.html. |
HUANG Z, LI F, YIN J, et al. Genetic diversity analysis based on phenotypic traits of local tea germplasm resources in low heat valley of Guizhou[J/OL]. Molecular Plant Breeding, 1-28. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.s.20210702.1115.004.html. | |
[23] | 杨兴荣, 包云秀, 黄玫. 云南稀有茶树品种“紫娟”的植物学特性和品质特征[J]. 茶叶, 2009, 35(1): 17-18. |
YANG X R, BAO Y X, HUANG M. The botanical and quality characteristics of the tea cultivar “Zi-Juan” in Yunnan Province[J]. Journal of Tea, 2009, 35(1): 17-18. (in Chinese with English abstract) | |
[24] | 张琛, 韩兆岚, 房婉萍, 等. 茶树叶色变异研究进展[J/OL]. 分子植物育种, 1-17. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1045.006.html. |
ZHANG C, HAN Z L, FANG W P, et al. Research progress of tea leaf color variation[J/OL]. Molecular Plant Breeding, 1-17. [2021-11-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1045.006.html. | |
[25] |
CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
DOI PMID |
[26] |
SHEN J Z, ZOU Z W, ZHANG X Z, et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5: 1-14.
DOI URL |
[27] | 田月月. 黄金芽茶树叶色响应光质的生理特性及机制研究[D]. 泰安: 山东农业大学, 2020. |
TIAN Y Y. Mechanism of physiological characteristics of leaf color in Camellia sinensis cv. Huangjinya response to light quality[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[28] | 唐晓波, 刘晓军, 师大亮, 等. 茶叶中叶绿素含量的季节性差异研究[J]. 浙江农业科学, 2009, 50(3): 502-503. |
TANG X B, LIU X J, SHI D L, et al. Study on seasonal difference of chlorophyll content in tea[J]. Journal of Zhejiang Agricultural Sciences, 2009, 50(3): 502-503. (in Chinese) | |
[29] | 黄小霞, 廖森泰, 刘学铭. 三种植物来源花青素在不同环境条件下稳定性的研究[C]//. “亚运食品安全与广东食品产业创新发展”学术研讨会暨2009年广东省食品学会年会论文集, 2009:214-218. |
[30] |
LEX A, GEHLENBORG N, STROBELT H, et al. UpSet: visualization of intersecting sets[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1983-1992.
DOI URL |
[31] |
CONWAY J R, LEX A, GEHLENBORG N. UpSetR: an R package for the visualization of intersecting sets and their properties[J]. Bioinformatics (Oxford, England), 2017, 33(18): 2938-2940.
DOI PMID |
[32] |
WANG L X, PAN D Z, LIANG M, et al. Regulation of anthocyanin biosynthesis in purple leaves of Zijuan tea (Camellia sinensis var. kitamura)[J]. International Journal of Molecular Sciences, 2017, 18(4): 833.
DOI URL |
[1] | 靳晓杰, 张静珍, 杨新笋. 基于广泛靶向代谢组学的武穴野生山药及其零余子代谢物差异分析[J]. 浙江农业学报, 2022, 34(4): 727-735. |
[2] | 时羽杰, 李兴龙, 唐媛, 余海萍, 邬晓勇. 基于GC-MS分析两地白色藜麦种子的代谢差异[J]. 浙江农业学报, 2019, 31(6): 869-877. |
[3] | 洪森荣, 吴夏俊鹏, 徐文慧, 占学林, 谢妮妮, 蒋妍, 汪金华, 凌飞, 吴丽霞, 万琳. 低温离体保存黄独微型块茎转录组、蛋白质组和代谢组的关联分析[J]. 浙江农业学报, 2017, 29(11): 1827-1834. |
[4] | 张焕春;陈笑芸;汪小福;杨桂玲;徐俊锋;李玥莹;* . 转基因作物的非预期效应及其检测[J]. , 2012, 24(1): 0-132. |
[5] | 马华升;姚艳玲;忻雅;陈文岳;童建新;崔海瑞. 大花惠兰组培苗中叶色突变体的获得与DNA鉴定[J]. , 2008, 20(3): 0-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||