浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2700-2709.DOI: 10.3969/j.issn.1004-1524.2022.12.13
姚龙仁1(), 王肖君1, 卓超2, 冷明珠3, 倪吾钟1,*(
)
收稿日期:
2021-12-10
出版日期:
2022-12-25
发布日期:
2022-12-26
通讯作者:
倪吾钟
作者简介:
*倪吾钟,E-mail:wzni@zju.edu.cn基金资助:
YAO Longren1(), WANG Xiaojun1, ZHUO Chao2, LENG Mingzhu3, NI Wuzhong1,*(
)
Received:
2021-12-10
Online:
2022-12-25
Published:
2022-12-26
Contact:
NI Wuzhong
摘要:
为进一步探讨酸雨与土壤磷素流失之间的内在联系,通过土柱淋溶试验,研究模拟酸雨对茶园土壤磷素溶出动力学特征和形态变化的影响。试验共设置4个处理:T1,pH值为3.5的模拟酸雨;T2,pH值为4.5的模拟酸雨;T3,pH值为5.5的模拟酸雨;CK,pH值为6.5的蒸馏水。结果表明,T1、T2、T3处理的土壤可溶性总磷(TDP)累积溶出量均显著(P<0.05)大于CK处理,增幅分别为17.3%、38.8%、20.4%。T1和T2处理的可溶性有机磷(DOP)累积溶出量显著(P<0.05)大于CK处理。回归分析表明,淋出液中总磷(TP)、可溶性无机磷(DIP)的累积溶出量与淋洗液体积的关系符合一级动力学方程(R2>0.999)。与CK相比,T1、T2、T3处理的DIP最大溶出量分别增加了16.0%、49.9%、16.0%,T2处理的TP最大溶出量增加了13.35%。模拟酸雨淋洗结束后,土壤中NaHCO3提取的无机磷、NaHCO3提取的有效磷的质量分数较CK显著(P<0.05)增加,NH4Cl提取的无机磷、NaOH提取的无机磷、浓盐酸提取的全磷质量分数较CK显著(P<0.05)减少。上述结果说明,酸雨既可以直接促进土壤中无机磷和有机磷的溶出,又能够增加土壤中较高活性磷组分的比例,从而增大土壤磷素流失风险。
中图分类号:
姚龙仁, 王肖君, 卓超, 冷明珠, 倪吾钟. 模拟酸雨对茶园土壤磷素溶出特征与形态的影响[J]. 浙江农业学报, 2022, 34(12): 2700-2709.
YAO Longren, WANG Xiaojun, ZHUO Chao, LENG Mingzhu, NI Wuzhong. Effects of simulated acid rain on dissolution characteristics and fraction of phosphorus in tea garden soil[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2700-2709.
处理Treatment | 回归方程Regression equation | R2 |
---|---|---|
T1 | y1=2.514 7×(1-e-0.208 7x) | 0.999 8 |
T2 | y1=3.061 7×(1-e-0.221 8x) | 0.999 8 |
T3 | y1=2.705 4×(1-e-0.229 0x) | 0.999 9 |
CK | y1=2.701 1×(1-e-0.175 4x) | 0.999 9 |
表1 不同处理下土壤总磷(TP)溶出的动力学方程
Table 1 Kinetic equation of total phosphorus (TP) leaching from soil under different treatments
处理Treatment | 回归方程Regression equation | R2 |
---|---|---|
T1 | y1=2.514 7×(1-e-0.208 7x) | 0.999 8 |
T2 | y1=3.061 7×(1-e-0.221 8x) | 0.999 8 |
T3 | y1=2.705 4×(1-e-0.229 0x) | 0.999 9 |
CK | y1=2.701 1×(1-e-0.175 4x) | 0.999 9 |
处理Treatment | 回归方程Regression equation | R2 |
---|---|---|
T1 | y2=0.952 9×(1-e-0.279 9x) | 0.999 9 |
T2 | y2=1.232 0×(1-e-0.299 2x) | 0.999 1 |
T3 | y2=0.954 4×(1-e-0.406 3x) | 0.999 2 |
CK | y2=0.821 7×(1-e-0.305 4x) | 0.999 9 |
表2 不同处理下土壤可溶性无机磷(DIP)溶出的动力学方程
Table 2 Kinetic equation of dissolved inorganic phosphorus (DIP) leaching from soil under different treatments
处理Treatment | 回归方程Regression equation | R2 |
---|---|---|
T1 | y2=0.952 9×(1-e-0.279 9x) | 0.999 9 |
T2 | y2=1.232 0×(1-e-0.299 2x) | 0.999 1 |
T3 | y2=0.954 4×(1-e-0.406 3x) | 0.999 2 |
CK | y2=0.821 7×(1-e-0.305 4x) | 0.999 9 |
处理Treatment | TP | TDP | DIP | DOP | PP |
---|---|---|---|---|---|
T1 | 1.41±0.03 c | 1.15±0.01 b | 0.64±0.01 c | 0.50±0.02 a | 0.27±0.04 b |
T2 | 1.79±0.05 a | 1.36±0.02 a | 0.87±0.01 a | 0.50±0.03 a | 0.43±0.03 a |
T3 | 1.62±0.02 b | 1.18±0.02 b | 0.77±0.01 b | 0.40±0.03 b | 0.45±0.03 a |
CK | 1.36±0.01 c | 0.98±0.03 c | 0.58±0.01 d | 0.40±0.01 b | 0.38±0.01 a |
表3 不同处理下各形态磷素的累积溶出量
Table 3 Accumulative amount of dissolved phosphorus in various forms under different treatments mg
处理Treatment | TP | TDP | DIP | DOP | PP |
---|---|---|---|---|---|
T1 | 1.41±0.03 c | 1.15±0.01 b | 0.64±0.01 c | 0.50±0.02 a | 0.27±0.04 b |
T2 | 1.79±0.05 a | 1.36±0.02 a | 0.87±0.01 a | 0.50±0.03 a | 0.43±0.03 a |
T3 | 1.62±0.02 b | 1.18±0.02 b | 0.77±0.01 b | 0.40±0.03 b | 0.45±0.03 a |
CK | 1.36±0.01 c | 0.98±0.03 c | 0.58±0.01 d | 0.40±0.01 b | 0.38±0.01 a |
处理Treatment | TP | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 948.0 a | 10.0 b | 60.8 b | 71.3 a | 395.4 b | 221.0 a | 7.2 b | 110.2 b | 7.9 b | 64.3 a |
T2 | 947.3 a | 9.3 c | 64.0 a | 71.5 a | 391.1 b | 221.1 a | 8.2 a | 114.5 a | 6.2 b | 61.6 c |
T3 | 948.2 a | 9.2 c | 62.2 ab | 67.4 a | 395.3 b | 222.8 a | 6.5 b | 113.7 ab | 8.3 b | 62.8 b |
CK | 950.9 a | 10.6 a | 57.6 c | 60.1 b | 411.4 a | 216.8 a | 6.8 b | 110.2 b | 13.1 a | 64.4 a |
表4 处理后土壤中各形态磷的质量分数
Table 4 Mass fraction of various phosphorus forms in soil after treatments mg·kg-1
处理Treatment | TP | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 948.0 a | 10.0 b | 60.8 b | 71.3 a | 395.4 b | 221.0 a | 7.2 b | 110.2 b | 7.9 b | 64.3 a |
T2 | 947.3 a | 9.3 c | 64.0 a | 71.5 a | 391.1 b | 221.1 a | 8.2 a | 114.5 a | 6.2 b | 61.6 c |
T3 | 948.2 a | 9.2 c | 62.2 ab | 67.4 a | 395.3 b | 222.8 a | 6.5 b | 113.7 ab | 8.3 b | 62.8 b |
CK | 950.9 a | 10.6 a | 57.6 c | 60.1 b | 411.4 a | 216.8 a | 6.8 b | 110.2 b | 13.1 a | 64.4 a |
处理Treatment | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|
T1 | 1.05 b | 6.41 b | 7.52 a | 41.70 b | 23.32 a | 0.76 b | 11.62 b | 0.83 b | 6.78 a |
T2 | 0.98 c | 6.76 a | 7.54 a | 41.29 b | 23.34 a | 0.86 a | 12.08 a | 0.65 b | 6.50 c |
T3 | 0.97 c | 6.56 ab | 7.10 a | 41.69 b | 23.49 a | 0.69 b | 11.99 ab | 0.87 b | 6.63 b |
CK | 1.11 a | 6.05 c | 6.32 b | 43.27 a | 22.80 a | 0.71 b | 11.58 b | 1.38 a | 6.77 a |
表5 处理后土壤中各形态磷占总磷的比例
Table 5 Proportion of various phosphorus forms to total phosphorus in soil after treatments %
处理Treatment | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|
T1 | 1.05 b | 6.41 b | 7.52 a | 41.70 b | 23.32 a | 0.76 b | 11.62 b | 0.83 b | 6.78 a |
T2 | 0.98 c | 6.76 a | 7.54 a | 41.29 b | 23.34 a | 0.86 a | 12.08 a | 0.65 b | 6.50 c |
T3 | 0.97 c | 6.56 ab | 7.10 a | 41.69 b | 23.49 a | 0.69 b | 11.99 ab | 0.87 b | 6.63 b |
CK | 1.11 a | 6.05 c | 6.32 b | 43.27 a | 22.80 a | 0.71 b | 11.58 b | 1.38 a | 6.77 a |
[1] | 李艾芬, 陶国才, 章明奎. 浙江省茶叶主产区土壤磷的积累与淋失阈值研究[J]. 浙江农业科学, 2014, 55(1): 31-33. |
LI A F, TAO G C, ZHANG M K. Study on soil phosphorus accumulation and leaching threshold in main tea producing areas of Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2014, 55(1): 31-33. (in Chinese) | |
[2] | 胡莹莹, 张民, 宋付朋. 控释复肥中磷素在马铃薯上的效应研究[J]. 植物营养与肥料学报, 2003, 9(2): 174-177. |
HU Y Y, ZHANG M, SONG F P. Effects of phosphorus in controlled-released compound fertilizer on potato growth[J]. Plant Nutrition and Fertilizing Science, 2003, 9(2): 174-177. (in Chinese with English abstract) | |
[3] | 王肖君, 王季丰, 侯琼, 等. 西苕溪流域主要经济林土壤磷素流失风险研究[J]. 土壤学报, 2021, 58(2): 487-494. |
WANG X J, WANG J F, HOU Q, et al. Potential risk of phosphorus loss from main non-wood forest soils in Xitiaoxi Watershed[J]. Acta Pedologica Sinica, 2021, 58(2): 487-494. (in Chinese with English abstract) | |
[4] | 卢仁骏, 严小龙, 黄志武, 等. 广东省砖红壤旱地土壤养分状况的网室调查[J]. 华南农业大学学报, 1992, 13(2): 74-80. |
LU R J, YAN X L, HUANG Z W, et al. Greenhouse survey studies (GSS) on upland latosol soil nutrient status in Guangdong Province[J]. Journal of South China Agricultural University, 1992, 13(2): 74-80. (in Chinese with English abstract) | |
[5] | 马丽娜, 蒋勇军, 张彩云, 等. 岩溶槽谷区坡面土壤磷素流失过程与影响因素: 以中梁山龙凤槽谷试验场为例[J]. 水土保持学报, 2020, 34(6): 265-274. |
MA L N, JIANG Y J, ZHANG C Y, et al. Process of soil phosphorus loss on a slope of Karst trough valley and influencing factors: a case study of Longfeng trough valley test site in Zhongliang Mountain, Chongqing, China[J]. Journal of Soil and Water Conservation, 2020, 34(6): 265-274. (in Chinese with English abstract) | |
[6] |
WANG X Q, LIU Z, NIU L, et al. Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: a proteomic analysis[J]. Trees, 2013, 27(1): 297-309.
DOI URL |
[7] | 季晓燕, 江洪, 洪江华, 等. 模拟酸雨对亚热带三个树种凋落叶分解速率及分解酶活性的影响[J]. 环境科学学报, 2013, 33(7): 2027-2035. |
JI X Y, JIANG H, HONG J H, et al. The influence of acid rain on leaf litter decomposition and enzyme activity of three trees in the subtropical forests[J]. Acta Scientiae Circumstantiae, 2013, 33(7): 2027-2035. (in Chinese with English abstract) | |
[8] |
JALALI M, NADERI E. The impact of acid rain on phosphorus leaching from a sandy loam calcareous soil of western Iran[J]. Environmental Earth Sciences, 2012, 66(1): 311-317.
DOI URL |
[9] | 徐华勤, 章家恩, 余家瑜, 等. 模拟酸雨对赤红壤磷素及Ca2+、Al3+、Fe2+淋失特征的影响[J]. 植物营养与肥料学报, 2011, 17(5): 1172-1178. |
XU H Q, ZHANG J E, YU J Y, et al. Effects of simulated acid rain on leaching of phosphorus, Ca2+, Al3+ and Fe2+ from lateritic red soils[J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1172-1178. (in Chinese with English abstract) | |
[10] | 韩亚萍, 马耀光, 吉鸿敏. 酸雨对黄土磷的淋溶效应[J]. 水土保持通报, 2013, 33(2): 66-71. |
HAN Y P, MA Y G, JI H M. Leaching effect of acid rain on phosphorus of loess soil[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 66-71. (in Chinese with English abstract) | |
[11] | 张华, 杨永奎, 谢德体, 等. 酸雨对紫色土氮磷淋失的影响[J]. 水土保持学报, 2007, 21(1): 22-25. |
ZHANG H, YANG Y K, XIE D T, et al. Effect of acid rain on leaching loss of nitrogen and phosphorus[J]. Journal of Soil and Water Conservation, 2007, 21(1): 22-25. (in Chinese with English abstract) | |
[12] | 廖雪菊, 刘甜, 韦宜慧, 等. 模拟酸雨对桉树人工林土壤养分流失的影响[J]. 广西林业科学, 2016, 45(4): 397-403. |
LIAO X J, LIU T, WEI Y H, et al. Effects of simulated acid rain on soil nutrient loss of Eucalyptus plantation[J]. Guangxi Forestry Science, 2016, 45(4): 397-403. (in Chinese with English abstract) | |
[13] | 李泽, 王华, 徐华勤, 等. 模拟酸雨对水稻土磷素动态变化的影响[J]. 农业现代化研究, 2015, 36(3): 477-481. |
LI Z, WANG H, XU H Q, et al. Effect of simulated acid rain on the dynamics of phosphorus in paddy soil[J]. Research of Agricultural Modernization, 2015, 36(3): 477-481. (in Chinese with English abstract) | |
[14] | 许中坚, 刘广深, 刘维屏. 酸雨对旱地红壤磷素释放的影响研究[J]. 环境科学学报, 2004, 24(1): 134-138. |
XU Z J, LIU G S, LIU W P. The influence of acid rain on the release of phosphorus from upland red soils[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 134-138. (in Chinese with English abstract) | |
[15] |
LIANG X Q, LIU J, CHEN Y X, et al. Effect of pH on the release of soil colloidal phosphorus[J]. Journal of Soils and Sediments, 2010, 10(8): 1548-1556.
DOI URL |
[16] | 黄敏, 梁荣祥, 尹维文, 等. 典型设施环境条件对土壤活性磷变化的影响[J]. 中国环境科学, 2018, 38(5): 1818-1825. |
HUANG M, LIANG R X, YIN W W, et al. Effects of typical greenhouse factors on labile phosphorus in soil[J]. China Environmental Science, 2018, 38(5): 1818-1825. (in Chinese with English abstract) | |
[17] | 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J]. 中国土壤与肥料, 2011(2): 1-9. |
SUN G F, JIN J Y, SHI Y L. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011(2): 1-9. (in Chinese with English abstract) | |
[18] | 刘娟, 包立, 张乃明, 等. 我国4种土壤磷素淋溶流失特征[J]. 水土保持学报, 2018, 32(5): 64-70. |
LIU J, BAO L, ZHANG N M, et al. Characteristics of phosphorus leaching losses in four soils in China[J]. Journal of Soil and Water Conservation, 2018, 32(5): 64-70. (in Chinese with English abstract) | |
[19] | MOIR J, TIESSEN H. Characterization of available P by sequential extraction[M]//Soil sampling and methods of analysis. 2nd Ed. Boca Raton: CRC Press, 2007. |
[20] | 张林, 吴宁, 吴彦, 等. 土壤磷素形态及其分级方法研究进展[J]. 应用生态学报, 2009, 20(7): 1775-1782. |
ZHANG L, WU N, WU Y, et al. Soil phosphorus form and fractionation scheme: a review[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1775-1782. (in Chinese with English abstract) | |
[21] |
CUI H B, ZHANG S W, LI R Y, et al. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain[J]. Environmental Science and Pollution Research International, 2017, 24(26): 21128-21137.
DOI PMID |
[22] |
RASHMI I, BISWAS A K, KARTIKA K S, et al. Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India[J]. Journal of the Saudi Society of Agricultural Sciences, 2020, 19(3): 241-248.
DOI URL |
[23] |
JORDÁN M M, ALMENDRO-CANDEL M B, NAVARRO-PEDREÑO J, et al. Bioavailability, mobility and leaching of phosphorus in a Mediterranean agricultural soil (NE Spain) amended with different doses of biosolids[J]. Environmental Geochemistry and Health, 2022, 44(1): 7-14.
DOI URL |
[24] | 王代长, 蒋新, 卞永荣, 等. 模拟酸雨对不同土层酸度和K+淋失规律的影响[J]. 环境科学, 2003, 24(2): 30-34. |
WANG D C, JIANG X, BIAN Y R, et al. The influence of simulated acid rain on acidity and K+ leaching regulation of different soil layers[J]. Chinese Journal of Environmental Science, 2003, 24(2): 30-34. (in Chinese with English abstract) | |
[25] | 孙水娟, 文倩, 谢平. 酸雨对土壤质量影响的研究进展[J]. 安徽农业科学, 2012, 40(5): 2774-2777. |
SUN S J, WEN Q, XIE P. Research advance on effects of acid rain on soil quality[J]. Journal of Anhui Agricultural Sciences, 2012, 40(5): 2774-2777. (in Chinese with English abstract) | |
[26] | 袁宇志, 郭颖, 张育灿, 等. 亚热带典型小流域景观格局对耕地土壤酸化的影响[J]. 土壤, 2019, 51(1): 90-99. |
YUAN Y Z, GUO Y, ZHANG Y C, et al. Impacts of landscape patterns on farmland soil acidification in typical subtropical small watersheds of China[J]. Soils, 2019, 51(1): 90-99. (in Chinese with English abstract) | |
[27] | 林俊杰, 曲衍桦, 陈茜, 等. 干湿循环对消落带狗牙根磷释放的影响[J]. 生态科学, 2019, 38(4): 7-12. |
LIN J J, QU Y H, CHEN X, et al. Effect of drying-rewetting cycles on the phosphorus release of Cynodon dactylon(L). Pers. decomposition in the water level fluctuation zone[J]. Ecological Science, 2019, 38(4): 7-12. (in Chinese with English abstract) | |
[28] |
LIU L, SONG C Y, YAN Z G, et al. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy[J]. Chemosphere, 2009, 77(1): 15-21.
DOI PMID |
[29] | 郭杏妹, 吴宏海, 罗媚, 等. 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J]. 岩石矿物学杂志, 2007, 26(6): 515-521. |
GUO X M, WU H H, LUO M, et al. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance[J]. Acta Petrologica et Mineralogica, 2007, 26(6): 515-521. (in Chinese with English abstract) | |
[30] | 张迪, 吴晓霞, 丁爱芳, 等. 模拟酸雨对钝化剂修复镉污染土壤效果研究[J]. 中国环境科学, 2021, 41(1): 288-296. |
ZHANG D, WU X X, DING A F, et al. Effects of passivating agents on Cd immobilization under simulated acid rain condition[J]. China Environmental Science, 2021, 41(1): 288-296. (in Chinese with English abstract) |
[1] | 刘春林, 张建, 彭益书, 倪莘然, 杨瑞东. 贵州雷山茶区土壤-茶叶重金属含量特征及饮茶风险评价[J]. 浙江农业学报, 2020, 32(6): 1049-1059. |
[2] | 黄玉梅, 王若然, 罗智丹, 李向, 邓楚璇. 模拟酸雨和除草剂单一及复合胁迫对城市草坪土壤动物的影响[J]. 浙江农业学报, 2019, 31(12): 2095-2108. |
[3] | 陶欣桐;江洪;*;郭凯 . 模拟不同类型酸雨胁迫对山核桃生理特征的影响[J]. , 2013, 25(4): 0-803. |
[4] | 付天杭;倪丹华;徐芳杰;章永松;林咸永;*. 模拟酸雨对施用猪粪的菜园土壤重金属有效性的影响 [J]. , 2009, 21(6): 0-598. |
[5] | 孟赐福;姜培坤;曹志洪;徐秋芳;周国模. 酸雨对植物的危害机理及其防治对策研究进展[J]. , 2008, 20(3): 0-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||