浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 639-646.DOI: 10.3969/j.issn.1004-1524.2023.03.17
朱诗君1(), 王丽丽1, 金树权1,*(
), 周金波1, 汪峰1, 卢晓红2
收稿日期:
2022-01-29
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*金树权,E-mail:jinshuq@126.com
作者简介:
朱诗君(1991—),男,浙江温州人,博士,助理研究员,主要从事农用微生物资源的开发与应用研究。E-mail:1227935418@qq.com
基金资助:
ZHU Shijun1(), WANG Lili1, JIN Shuquan1,*(
), ZHOU Jinbo1, WANG Feng1, LU Xiaohong2
Received:
2022-01-29
Online:
2023-03-25
Published:
2023-04-07
摘要:
以重度连作障碍设施草莓大棚为研究对象,比较分析高温闷棚(T1)、生石灰消毒(T2)、石灰氮消毒(T3)、棉隆消毒(T4)4种土壤消毒方式对土壤真菌多样性和土壤真菌群落结构的影响。结果表明,与对照(CK)相比,不同土壤消毒处理的土壤真菌多样性均有不同程度的降低,α多样性各项指标的降幅从高到低依次为T4>T3>T2>T1。对于土壤优势真菌属(相对丰度>1%)而言,与CK相比,4个土壤消毒处理下,镰刀菌属(Fusarium)、梭孢壳属(Thielavia)、被孢霉属(Mortierella)、轮枝菌属(Verticillium)、枝顶孢霉属(Acremonium)的相对丰度皆下降,而毛壳菌属(Chaetomium)与青霉属(Penicillium)的相对丰度皆上升。根据不同消毒方式对土壤真菌多样性和土壤真菌群落结构的影响,消毒效果最好的为棉隆消毒,其次为石灰氮消毒,考虑到经济成本,建议选择石灰氮消毒。
中图分类号:
朱诗君, 王丽丽, 金树权, 周金波, 汪峰, 卢晓红. 不同土壤消毒方式对土壤真菌多样性和群落结构的影响[J]. 浙江农业学报, 2023, 35(3): 639-646.
ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, WANG Feng, LU Xiaohong. Effects of different soil disinfection methods on soil fungal diversity and community structure[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 639-646.
处理 Treatment | OTUs | Chao1指数 Chao1 index | 物种数 Observed species | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
CK | 465 | 546.98 | 455.06 | 5.24 | 0.94 |
T1 | 446 | 521.58 | 439.27 | 5.17 | 0.93 |
T2 | 425 | 509.33 | 423.53 | 5.10 | 0.93 |
T3 | 391 | 465.71 | 388.98 | 4.82 | 0.91 |
T4 | 370 | 432.06 | 369.03 | 4.77 | 0.90 |
表1 不同土壤消毒处理的土壤真菌群落α多样性指数
Table 1 Alpha diversity index of soil fungal communities of different soil disinfection treatments
处理 Treatment | OTUs | Chao1指数 Chao1 index | 物种数 Observed species | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
CK | 465 | 546.98 | 455.06 | 5.24 | 0.94 |
T1 | 446 | 521.58 | 439.27 | 5.17 | 0.93 |
T2 | 425 | 509.33 | 423.53 | 5.10 | 0.93 |
T3 | 391 | 465.71 | 388.98 | 4.82 | 0.91 |
T4 | 370 | 432.06 | 369.03 | 4.77 | 0.90 |
菌门Phylum | 菌属Species | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
子囊菌门Ascomycota | 镰刀菌属Fusarium | 5.77 | 2.74 | 1.88 | 1.05 | 0.47 |
梭孢壳属Thielavia | 5.14 | 3.95 | 3.71 | 4.90 | 1.86 | |
棒囊壳属Corynascus | 3.28 | 2.32 | 2.91 | 7.73 | 2.55 | |
轮枝菌属Verticillium | 2.45 | 1.29 | 0.99 | 0.88 | 0.40 | |
脉孢菌属Neurospora | 1.63 | 1.66 | 5.66 | 2.69 | 1.19 | |
枝顶孢霉属Acremonium | 1.61 | 0.84 | 0.86 | 0.94 | 1.51 | |
毛壳菌属Chaetomium | 1.31 | 6.82 | 1.83 | 2.45 | 16.78 | |
曲霉菌属Aspergillus | 1.04 | 1.09 | 0.78 | 0.93 | 1.59 | |
青霉属Penicillium | 0.79 | 1.90 | 1.67 | 2.65 | 1.51 | |
腐质霉属Humicola | 0.53 | 1.52 | 1.23 | 0.93 | 0.20 | |
爪甲白癣菌属Arthrographis | 0.48 | 0.32 | 0.17 | 0.40 | 0.07 | |
柄孢壳属Zopfiella | 0.30 | 0.17 | 0.45 | 0.28 | 0.14 | |
赛多孢子菌属Scedosporium | 0.32 | 0.76 | 0.95 | 0.35 | 0.17 | |
木霉属Trichoderma | 0.36 | 0.33 | 0.83 | 0.96 | 1.37 | |
Phaeoacremonium | 0.22 | 0.25 | 0.06 | 0.09 | 0.16 | |
Balsamia | 0.49 | 0.19 | <0.01 | <0.01 | <0.01 | |
球形密格孢属Junewangia | 0.20 | 0.18 | 0.12 | 0.08 | 0.10 | |
篮状菌属Talaromyces | 0.19 | 0.17 | 0.03 | 0.28 | <0.01 | |
德巴利酵母属Debaryomyces | 0.20 | 0.16 | <0.01 | 0.01 | 0.02 | |
拟青霉属Paecilomyces | 0.45 | 0.61 | 0.43 | 0.75 | 0.43 | |
Pseudaleuria | 0.40 | 0.14 | 0.45 | <0.01 | <0.01 | |
头梗霉属Cephaliophora | 0.15 | 0.12 | <0.01 | <0.01 | 0.01 | |
Xylomyces | 0.12 | 0.12 | 0.13 | 0.18 | <0.01 | |
Polyschema | 0.11 | 1.49 | 0.09 | 0.01 | 0.01 | |
赭霉属Ochroconis | 0.14 | 0.11 | 0.03 | 0.02 | 0.03 | |
节丛孢属Arthrobotrys | 0.62 | 0.68 | 0.27 | 0.12 | 2.96 | |
假散囊菌属Pseudeurotium | 0.11 | 0.11 | 0.07 | 0.14 | 0.11 | |
菌门Phylum | 菌属Species | CK | T1 | T2 | T3 | T4 |
柱霉属Scytalidium | 0.10 | 0.09 | 0.25 | 0.07 | 0.02 | |
嗜热链球菌属Mycothermus | 0.06 | 0.03 | 0.20 | 0.07 | 0.03 | |
Corallomycetella | 0.03 | 0.04 | 0.03 | 0.18 | 0.10 | |
嗜热真菌属Thermomyces | 0.02 | 0.03 | 0.26 | 0.04 | 0.04 | |
小画线壳属Monographella | 0.02 | 0.03 | 0.03 | 0.01 | 0.25 | |
单胞瓶霉属Phialemonium | 0.01 | 0.01 | 0.12 | 0.06 | <0.01 | |
微囊菌属Microascus | 0.11 | 0.01 | 0.14 | <0.01 | 0.04 | |
柄孢壳菌属Podospora | 0.11 | 0.01 | 0.02 | 0.01 | 0.10 | |
枝鼻菌属Cladorrhinum | 0.21 | 0.01 | 0.12 | 0.20 | 0.07 | |
Menispora | <0.01 | <0.01 | <0.01 | 0.01 | 0.14 | |
Sagenomella | <0.01 | <0.01 | <0.01 | 0.05 | 0.21 | |
Mycoleptodiscus | 0.10 | <0.01 | <0.01 | <0.01 | 0.11 | |
担子菌门Basidiomycota | 蜡质菌属Ceriporia | 0.91 | 0.98 | 11.76 | 5.21 | <0.01 |
锁瑚菌属Clavulina | 0.46 | 0.11 | 0.04 | 0.21 | 0.07 | |
小脆柄菇属Psathyrella | 0.33 | 0.18 | 0.25 | 0.42 | 0.23 | |
锥盖伞属Conocybe | 0.33 | 0.04 | 0.20 | 0.63 | 0.78 | |
Waitea | <0.01 | 0.26 | <0.01 | 0.00 | <0.01 | |
齿菌属Hydnum | 0.16 | 0.24 | 0.02 | 0.02 | 0.10 | |
肉齿菌属Sarcodon | 0.16 | 0.13 | <0.01 | 0.05 | 0.02 | |
Micropsalliota | <0.01 | 0.72 | 0.82 | <0.01 | <0.01 | |
Tricholosporum | 0.09 | 0.07 | <0.01 | <0.01 | 0.25 | |
Arachnion | 0.06 | 0.06 | 0.07 | 0.13 | <0.01 | |
牛肝菌属Chalciporus | 0.03 | 0.04 | 0.04 | 0.11 | 0.01 | |
Fibulochlamys | 0.02 | 0.02 | 0.02 | 0.03 | 0.12 | |
拟鬼伞属Coprinopsis | 0.16 | 0.01 | 0.01 | 0.01 | 0.10 | |
裸伞属Gymnopilus | 0.55 | 1.68 | <0.01 | <0.01 | 0.11 | |
Globulicium | 0.20 | <0.01 | <0.01 | <0.01 | 0.44 | |
Biatoropsis | 0.10 | <0.01 | 0.02 | 0.51 | <0.01 | |
壶菌门Chytridiomycota | 小壶菌属Spizellomyces | 0.61 | 1.32 | 0.39 | 0.41 | 0.13 |
根囊壶菌属Rhizophlyctis | 0.50 | 0.15 | 0.21 | 0.87 | 1.33 | |
油壶菌属Olpidium | 0.12 | 0.13 | 0.01 | 0.04 | 0.17 | |
囊壶菌属Phlyctochytrium | 0.01 | 0.01 | <0.01 | <0.01 | 0.56 | |
Triparticalcar | <0.01 | <0.01 | 0.02 | 0.02 | 0.15 | |
接合菌门Zygomycota | 被孢霉属Mortierella | 16.22 | 8.71 | 6.20 | 4.64 | 5.46 |
长孢菌属Ramicandelaber | 0.13 | 0.05 | 1.82 | 0.87 | <0.01 |
表2 不同处理对土壤真菌属水平上物种相对丰度的影响
Table 2 Effects of different treatments on relative abundance of soil fungi species at genus level %
菌门Phylum | 菌属Species | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
子囊菌门Ascomycota | 镰刀菌属Fusarium | 5.77 | 2.74 | 1.88 | 1.05 | 0.47 |
梭孢壳属Thielavia | 5.14 | 3.95 | 3.71 | 4.90 | 1.86 | |
棒囊壳属Corynascus | 3.28 | 2.32 | 2.91 | 7.73 | 2.55 | |
轮枝菌属Verticillium | 2.45 | 1.29 | 0.99 | 0.88 | 0.40 | |
脉孢菌属Neurospora | 1.63 | 1.66 | 5.66 | 2.69 | 1.19 | |
枝顶孢霉属Acremonium | 1.61 | 0.84 | 0.86 | 0.94 | 1.51 | |
毛壳菌属Chaetomium | 1.31 | 6.82 | 1.83 | 2.45 | 16.78 | |
曲霉菌属Aspergillus | 1.04 | 1.09 | 0.78 | 0.93 | 1.59 | |
青霉属Penicillium | 0.79 | 1.90 | 1.67 | 2.65 | 1.51 | |
腐质霉属Humicola | 0.53 | 1.52 | 1.23 | 0.93 | 0.20 | |
爪甲白癣菌属Arthrographis | 0.48 | 0.32 | 0.17 | 0.40 | 0.07 | |
柄孢壳属Zopfiella | 0.30 | 0.17 | 0.45 | 0.28 | 0.14 | |
赛多孢子菌属Scedosporium | 0.32 | 0.76 | 0.95 | 0.35 | 0.17 | |
木霉属Trichoderma | 0.36 | 0.33 | 0.83 | 0.96 | 1.37 | |
Phaeoacremonium | 0.22 | 0.25 | 0.06 | 0.09 | 0.16 | |
Balsamia | 0.49 | 0.19 | <0.01 | <0.01 | <0.01 | |
球形密格孢属Junewangia | 0.20 | 0.18 | 0.12 | 0.08 | 0.10 | |
篮状菌属Talaromyces | 0.19 | 0.17 | 0.03 | 0.28 | <0.01 | |
德巴利酵母属Debaryomyces | 0.20 | 0.16 | <0.01 | 0.01 | 0.02 | |
拟青霉属Paecilomyces | 0.45 | 0.61 | 0.43 | 0.75 | 0.43 | |
Pseudaleuria | 0.40 | 0.14 | 0.45 | <0.01 | <0.01 | |
头梗霉属Cephaliophora | 0.15 | 0.12 | <0.01 | <0.01 | 0.01 | |
Xylomyces | 0.12 | 0.12 | 0.13 | 0.18 | <0.01 | |
Polyschema | 0.11 | 1.49 | 0.09 | 0.01 | 0.01 | |
赭霉属Ochroconis | 0.14 | 0.11 | 0.03 | 0.02 | 0.03 | |
节丛孢属Arthrobotrys | 0.62 | 0.68 | 0.27 | 0.12 | 2.96 | |
假散囊菌属Pseudeurotium | 0.11 | 0.11 | 0.07 | 0.14 | 0.11 | |
菌门Phylum | 菌属Species | CK | T1 | T2 | T3 | T4 |
柱霉属Scytalidium | 0.10 | 0.09 | 0.25 | 0.07 | 0.02 | |
嗜热链球菌属Mycothermus | 0.06 | 0.03 | 0.20 | 0.07 | 0.03 | |
Corallomycetella | 0.03 | 0.04 | 0.03 | 0.18 | 0.10 | |
嗜热真菌属Thermomyces | 0.02 | 0.03 | 0.26 | 0.04 | 0.04 | |
小画线壳属Monographella | 0.02 | 0.03 | 0.03 | 0.01 | 0.25 | |
单胞瓶霉属Phialemonium | 0.01 | 0.01 | 0.12 | 0.06 | <0.01 | |
微囊菌属Microascus | 0.11 | 0.01 | 0.14 | <0.01 | 0.04 | |
柄孢壳菌属Podospora | 0.11 | 0.01 | 0.02 | 0.01 | 0.10 | |
枝鼻菌属Cladorrhinum | 0.21 | 0.01 | 0.12 | 0.20 | 0.07 | |
Menispora | <0.01 | <0.01 | <0.01 | 0.01 | 0.14 | |
Sagenomella | <0.01 | <0.01 | <0.01 | 0.05 | 0.21 | |
Mycoleptodiscus | 0.10 | <0.01 | <0.01 | <0.01 | 0.11 | |
担子菌门Basidiomycota | 蜡质菌属Ceriporia | 0.91 | 0.98 | 11.76 | 5.21 | <0.01 |
锁瑚菌属Clavulina | 0.46 | 0.11 | 0.04 | 0.21 | 0.07 | |
小脆柄菇属Psathyrella | 0.33 | 0.18 | 0.25 | 0.42 | 0.23 | |
锥盖伞属Conocybe | 0.33 | 0.04 | 0.20 | 0.63 | 0.78 | |
Waitea | <0.01 | 0.26 | <0.01 | 0.00 | <0.01 | |
齿菌属Hydnum | 0.16 | 0.24 | 0.02 | 0.02 | 0.10 | |
肉齿菌属Sarcodon | 0.16 | 0.13 | <0.01 | 0.05 | 0.02 | |
Micropsalliota | <0.01 | 0.72 | 0.82 | <0.01 | <0.01 | |
Tricholosporum | 0.09 | 0.07 | <0.01 | <0.01 | 0.25 | |
Arachnion | 0.06 | 0.06 | 0.07 | 0.13 | <0.01 | |
牛肝菌属Chalciporus | 0.03 | 0.04 | 0.04 | 0.11 | 0.01 | |
Fibulochlamys | 0.02 | 0.02 | 0.02 | 0.03 | 0.12 | |
拟鬼伞属Coprinopsis | 0.16 | 0.01 | 0.01 | 0.01 | 0.10 | |
裸伞属Gymnopilus | 0.55 | 1.68 | <0.01 | <0.01 | 0.11 | |
Globulicium | 0.20 | <0.01 | <0.01 | <0.01 | 0.44 | |
Biatoropsis | 0.10 | <0.01 | 0.02 | 0.51 | <0.01 | |
壶菌门Chytridiomycota | 小壶菌属Spizellomyces | 0.61 | 1.32 | 0.39 | 0.41 | 0.13 |
根囊壶菌属Rhizophlyctis | 0.50 | 0.15 | 0.21 | 0.87 | 1.33 | |
油壶菌属Olpidium | 0.12 | 0.13 | 0.01 | 0.04 | 0.17 | |
囊壶菌属Phlyctochytrium | 0.01 | 0.01 | <0.01 | <0.01 | 0.56 | |
Triparticalcar | <0.01 | <0.01 | 0.02 | 0.02 | 0.15 | |
接合菌门Zygomycota | 被孢霉属Mortierella | 16.22 | 8.71 | 6.20 | 4.64 | 5.46 |
长孢菌属Ramicandelaber | 0.13 | 0.05 | 1.82 | 0.87 | <0.01 |
[1] | 郭世荣, 孙锦, 束胜, 等. 我国设施园艺概况及发展趋势[J]. 中国蔬菜, 2012(18): 1-14. |
GUO S R, SUN J, SHU S, et al. Analysis of general situation, characteristics, existing problems and development trend of protected horticulture in China[J]. China Vegetables, 2012(18): 1-14. (in Chinese with English abstract) | |
[2] | 王芳. 茄子连作障碍机理研究[D]. 北京: 中国农业大学, 2003: 9-11. |
WANG F. The mechanism of eggplant (Solanum melongena L.) replanting problem[D]. Beijing: China Agricultural University, 2003: 9-11. (in Chinese with English abstract) | |
[3] |
FANG W S, WANG X L, HUANG B, et al. Comparative analysis of the effects of five soil fumigants on the abundance of denitrifying microbes and changes in bacterial community composition[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109850.
DOI URL |
[4] |
LI K, DILEGGE M J, MINAS I S, et al. Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome[J]. Rhizosphere, 2019, 12: 100176.
DOI URL |
[5] | 张大琪, 颜冬冬, 方文生, 等. 生物熏蒸: 环境友好型土壤熏蒸技术[J]. 农药学学报, 2020, 22(1): 11-18. |
ZHANG D Q, YAN D D, FANG W S, et al. Biofumigation: an environment-friendly soil fumigation technology[J]. Chinese Journal of Pesticide Science, 2020, 22(1): 11-18. (in Chinese with English abstract) | |
[6] | 曹坳程, 郭美霞, 王秋霞, 等. 世界土壤消毒技术进展[J]. 中国蔬菜, 2010(21): 17-22. |
CAO A C, GUO M X, WANG Q X, et al. Progress of soil disinfection technology in the world[J]. China Vegetables, 2010(21): 17-22. (in Chinese) | |
[7] |
SUZUKI K, KASHIWA N, NOMURA K, et al. Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions[J]. Biology and Fertility of Soils, 2021, 57(2): 269-279.
DOI |
[8] |
MAO L G, JIANG H Y, WANG Q X, et al. Efficacy of soil fumigation with dazomet for controlling ginger bacterial wilt (Ralstonia solanacearum) in China[J]. Crop Protection, 2017, 100: 111-116.
DOI URL |
[9] |
PERVAIZ Z H, IQBAL J, ZHANG Q M, et al. Continuous cropping alters multiple biotic and abiotic indicators of soil health[J]. Soil Systems, 2020, 4(4): 59.
DOI URL |
[10] |
DONG L L, XU J, ZHANG L J, et al. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil[J]. Chinese Medicine, 2017, 12: 18.
DOI PMID |
[11] | 张子龙, 王文全. 植物连作障碍的形成机制及其调控技术研究进展[J]. 生物学杂志, 2010, 27(5): 69-72. |
ZHANG Z L, WANG W Q. Progress on formation mechanism and control measurements of continuous cropping obstacles in plants[J]. Journal of Biology, 2010, 27(5): 69-72. (in Chinese with English abstract) | |
[12] |
MESZKA B, MALUSÀ E. Effects of soil disinfection on health status, growth and yield of strawberry stock plants[J]. Crop Protection, 2014, 63: 113-119.
DOI URL |
[13] |
MA L J, GEISER D M, PROCTOR R H, et al. Fusarium pathogenomics[J]. Annual Review of Microbiology, 2013, 67: 399-416.
DOI URL |
[14] |
ZHAO J, MEI Z, ZHANG X, et al. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field[J]. Scientific Reports, 2017, 7: 43103.
DOI |
[15] |
SUTTON J C. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum[J]. Canadian Journal of Plant Pathology, 1982, 4(2): 195-209.
DOI URL |
[16] |
ZHU J H, REN Z J, HUANG B, et al. Effects of fumigation with allyl isothiocyanate on soil microbial diversity and community structure of tomato[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1226-1236.
DOI PMID |
[17] |
NICOLA L, TURCO E, ALBANESE D, et al. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease[J]. Applied Soil Ecology, 2017, 113: 71-79.
DOI URL |
[18] |
LI F, CHEN L, REDMILE-GORDON M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation & Development, 2018, 29(6): 1642-1651.
DOI URL |
[19] |
UEHLING J, GRYGANSKYI A, HAMEED K, et al. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens[J]. Environmental Microbiology, 2017, 19(8): 2964-2983.
DOI URL |
[20] |
IBRAHIM S R M, ALTYAR A E, MOHAMED S G A, et al. Genus Thielavia: phytochemicals, industrial importance and biological relevance[J]. Natural Product Research, 2022, 36(19):5108-5123.
DOI URL |
[21] |
MTIBAÀ R, EZZANAD A, ARANDA E, et al. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: identification of fungal metabolites and proposal of a putative pathway[J]. Science of the Total Environment, 2020, 708: 135129.
DOI URL |
[22] | DANGI S R, GERIK J S, TIRADO-CORBALÁ R, et al. Soil microbial community structure and target organisms under different fumigation treatments[J]. Applied and Environmental Soil Science, 2015, 2015: 673264. |
[23] |
NIELSEN J C, GRIJSEELS S, PRIGENT S, et al. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species[J]. Nature Microbiology, 2017, 2: 17044.
DOI URL |
[24] | SOYTONG K, KANOKMEDHAKUL S, KUKONGVIRIYAPA V, et al. Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: a review article[J]. Fungi Diversity, 2001, 7: 1-15. |
[25] |
DUPONNOIS R, KISA M, PLENCHETTE C. Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(2): 280-282.
DOI URL |
[26] |
NIU X M, ZHANG K Q. Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and Nematodes[J]. Mycology, 2011, 2(2): 59-78.
DOI URL |
[27] |
LEANDRO L F S, GUZMAN T, FERGUSON L M, et al. Population dynamics of Trichoderma in fumigated and compost-amended soil and on strawberry roots[J]. Applied Soil Ecology, 2007, 35(1): 237-246.
DOI URL |
[28] |
XUE C, SHEN Z, HAO Y, et al. Fumigation coupled with bio-organic fertilizer for the suppression of watermelon Fusarium wilt disease re-shapes the soil microbiome[J]. Applied Soil Ecology, 2019, 140: 49-56.
DOI URL |
[1] | 姚燕来, 朱为静, 丁检, 洪磊东, 洪春来, 王卫平, 朱凤香, 何伟科, 洪海清. 浙江省规模化蔬菜基地连作障碍与土壤环境调查分析[J]. 浙江农业学报, 2022, 34(7): 1474-1484. |
[2] | 王静鸽, 吉小凤, 吴静, 杨华, 唐标, 丁保安. 磺胺间甲氧嘧啶对蛋鸡粪便菌群结构的影响[J]. 浙江农业学报, 2022, 34(2): 284-292. |
[3] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[4] | 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析[J]. 浙江农业学报, 2020, 32(6): 1019-1028. |
[5] | 罗熳丽, 兰琴, 王戈, 魏洪, 肖玖金, 张健. 施肥对农田土壤动物群落结构的影响[J]. 浙江农业学报, 2019, 31(6): 946-954. |
[6] | 王燕云, 赵龙杰, 郝春莉, 蔡尽忠. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631-638. |
[7] | 苟丽琼, 姚恒, 王戈, 黄如成, 段均华, 肖玖金, 张健. 稻草不同还田方式对土壤动物群落结构的影响[J]. 浙江农业学报, 2019, 31(3): 450-457. |
[8] | 吴曰福, 顾爱星, 王洪凯. 碱蓬根系嗜盐耐盐真菌的分离与鉴定[J]. 浙江农业学报, 2018, 30(4): 649-655. |
[9] | 刘紫英, 黄磊, 袁斌, 刘小林, 徐胜光, 黄涛. 一株草莓连作自毒障碍主要物质苯甲酸降解细菌的筛选及其降解效果研究[J]. 浙江农业学报, 2018, 30(10): 1699-1704. |
[10] | 张茜, 杨东旭, 钟永德, 周国英, 李文明. 黄石寨景区旅游活动对典型植物群落的影响[J]. 浙江农业学报, 2017, 29(7): 1158-1165. |
[11] | 周开胜. 强还原处理改良西瓜连作土壤[J]. 浙江农业学报, 2017, 29(6): 982-987. |
[12] | 范琳娟, 刘奇志, 王合, 徐振翔, 李维华. 玉米-苹果轮作体系对苹果根际土壤酶活性和pH值的影响[J]. 浙江农业学报, 2017, 29(12): 2084-2090. |
[13] | 罗熳丽, 黄婷婷, 肖玖金, 黄进平, 张健, 彭彩云. 城市草坪不同管理方式下土壤动物群落结构特征与差异[J]. 浙江农业学报, 2017, 29(11): 1835-1843. |
[14] | 李媛媛, 石凯, 德力格尔. 内蒙古草盲蝽复合组昆虫群落结构及区系[J]. 浙江农业学报, 2016, 28(9): 1558-1563. |
[15] | 徐伟慧, 吴凤芝. 西瓜根际土壤酶及微生物对小麦伴生的响应[J]. 浙江农业学报, 2016, 28(9): 1588-1594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||