浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2636-2644.DOI: 10.3969/j.issn.1004-1524.20230864
王晓楠1(), 冯晓晓2, 施斌1, 陈恩磊1, 陈梦丽1, 郑永利3,*(
), 吴慧明1,*(
)
收稿日期:
2023-07-12
出版日期:
2023-11-25
发布日期:
2023-12-04
作者简介:
王晓楠(1997—),女,内蒙古乌兰察布人,硕士研究生,研究方向为农药毒理与绿色防控。E-mail:1084220367@qq.com
通讯作者:
* 吴慧明,E-mail: Wuhm@zafu.edu.cn;郑永利,E-mail: yonglizheng@yeah.net
基金资助:
WANG Xiaonan1(), FENG Xiaoxiao2, SHI Bin1, CHEN Enlei1, CHEN Mengli1, ZHENG Yongli3,*(
), WU Huiming1,*(
)
Received:
2023-07-12
Online:
2023-11-25
Published:
2023-12-04
摘要:
为鉴定一株来自番茄根部的内生细菌及其抑菌作用,检验番茄内生细菌对不同病原菌的拮抗作用,并为常见细菌性病害的生物防治提供思路,从番茄根分离得到内生细菌,通过形态特征、脂肪酸、生理生化特征测定及建立gyrA和rpoB双基因系统发育树的方法鉴定。采用平板法测试了内生细菌对5种常见植物病原细菌的拮抗作用,并用盆栽试验测试该菌对番茄青枯病的防效。经过鉴定菌株ZN-S10为贝莱斯芽孢杆菌(Bacillus velezensis)。抑菌试验显示,B. velezensis ZN-S10对番茄细菌性髓部坏死病菌(Pseudomonas viridifiava)、甘薯茎腐病菌(Dickeya dadantii)、花椰菜细菌性软腐病菌(Erwinia carotovora)、 番茄青枯病菌(Ralstonia solanacearum)、李细菌性穿孔病菌(Xanthomonas campestris)均有不同程度的抑菌活性。温室盆栽试验表明,B. velezensis ZN-S10对番茄青枯病的防治效果为57.14%,与3%中生菌素可湿性粉剂的防治效果无显著差异,可有效降低番茄青枯病的发展。研究结果可以为有效利用内生细菌防治常见细菌性病害提供理论依据,B. velezensis ZN-S10对番茄细菌性病害的防治具有较大的应用前景。
中图分类号:
王晓楠, 冯晓晓, 施斌, 陈恩磊, 陈梦丽, 郑永利, 吴慧明. 内生细菌ZN-S10的鉴定及其对番茄青枯病菌的抑菌作用[J]. 浙江农业学报, 2023, 35(11): 2636-2644.
WANG Xiaonan, FENG Xiaoxiao, SHI Bin, CHEN Enlei, CHEN Mengli, ZHENG Yongli, WU Huiming. Identification of Bacillus velezensis ZN-S10 and its antification effect on tomato bacterial wilt[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2636-2644.
生理生化指标测试 Physiological and biochemical index | ZN-S10菌株 ZN-S10 strain |
---|---|
氧化酶 Oxidase | + |
卵磷脂酶 Lecithinase | + |
过氧化氢酶 Catalase | + |
淀粉水解 Amylohydrolysis | + |
V-P 测定 V-P test | + |
甲基红 Methyl red | - |
吲哚 Indole | + |
氯霉素 Chloromycetin | - |
链霉素 Streptomycin | - |
卡那霉素 Kanamycin | - |
氨苄青霉素 Ampicillin | - |
表1 ZN-S10的生理生化结果
Table 1 Physiological and biochemical identification results of endophytic bacterium ZN-S10
生理生化指标测试 Physiological and biochemical index | ZN-S10菌株 ZN-S10 strain |
---|---|
氧化酶 Oxidase | + |
卵磷脂酶 Lecithinase | + |
过氧化氢酶 Catalase | + |
淀粉水解 Amylohydrolysis | + |
V-P 测定 V-P test | + |
甲基红 Methyl red | - |
吲哚 Indole | + |
氯霉素 Chloromycetin | - |
链霉素 Streptomycin | - |
卡那霉素 Kanamycin | - |
氨苄青霉素 Ampicillin | - |
图2 基于rpoB、gyrA基因序列构建的ZN-S10系统发育树 分支处的数值为Bootstrap法重复 1 000次评估得到的各节点支持率,标尺0.050为进化距离。
Fig.2 ZN-S10 phylogenetic tree based on rpoB and gyrA gene sequences The value at the branch is the support rate of each node obtained by repeating the Bootstrap method 1 000 times, with a scale of 0.050 as the evolution distance.
图3 Bacillus velezensis ZN-S10对不同病原菌的抑菌效果 图中平板左侧滤纸片为CK,右侧为ZN-S10。从左到右依次为花椰菜细菌性软腐病菌ZJUP0154-1、番茄细菌性髓部坏死病菌ZJUP0398-2、甘薯茎腐病菌ZAFU0898、番茄青枯病菌ZAFU0005、李细菌性穿孔病菌ZJUP0463-1。
Fig.3 Antibacterial effect of Bacillus velezensis ZN-S10 against different pathogens The filter paper on the left side of the plate in the picture is CK, and the filter paper on the right side is ZN-S10. From left to right are Erwinia carotovora ZJUP0154-1, Pseudomonas viridifiava ZJUP0398-2, Dickeya dadantii ZAFU0898, Ralstonia solanacearum ZAFU0005, and Xanthomonas campestris ZJUP0463-1.
图4 Bacillus velezensis ZN-S10对5种病原菌的抑菌率 数据为平均值±标准误,柱上没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 Inhibition rate of Bacillus velezensis ZN-S10 against five pathogens The data is mean ± standard error, and the different lowercase letters on the column indicate significant differences (P<0.05). The same as below.
处理 Treatment | 病情指数 Disease index | 相对防治效果 Relative control effect/% |
---|---|---|
ZN-S10 | 31.25 | 57.14 |
3%中生菌素 WP | 31.25 | 57.14 |
3% Zhongshengmycin WP | ||
MOCK2 | 72.92 |
表2 Bacillus velezensis ZN-S10与3%中生菌素对番茄青枯病的防治效果
Table 2 Effect of Bacillus velezensis ZN-S10 and 3% Zhongshengmycin WP on control of Ralstonia solanacearum
处理 Treatment | 病情指数 Disease index | 相对防治效果 Relative control effect/% |
---|---|---|
ZN-S10 | 31.25 | 57.14 |
3%中生菌素 WP | 31.25 | 57.14 |
3% Zhongshengmycin WP | ||
MOCK2 | 72.92 |
图5 ZN-S10对番茄青枯病菌ZAFU0005的防治效果 A, 清水;B,接种番茄青枯病菌ZAFU0005;C,3%中生菌素WP灌根7 d后接种番茄青枯病菌ZAFU0005;D,ZN-S10灌根7 d后接种番茄青枯病菌ZAFU0005。
Fig.5 Control effect of ZN-S10 on Ralstonia solanacearum ZAFU0005 A, Clear water; B, Inoculate Ralstonia solanacearum ZAFU0005; C, Inoculate Ralstonia solanacearum ZAFU0005 after 7 days of root irrigation with 3% mycorrhizal WP; D, After 7 days of root irrigation with ZN-S10, Ralstonia solanacearum ZAFU0005 was inoculated.
图6 番茄的MDA含量变化 MOCK,清水;T1,ZN-S10;T2,ZAFU0005;T3,ZN-S10+ZAFU0005 。同一处理时间下不同处理间没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.6 MDA content changes of tomato MOCK, Clean water; T1, ZN-S10; T2, ZAFU0005; T3, ZN-S10+ZAFU0005. Under the same treatment time, the bars of different treatments marked with different lowercase letters showed significant difference (P<0.05).The same as below.
[1] | TANAMBELL H, QUEK S Y, BISHOP K S. Screening of in vitro health benefits of tangerine tomatoes[J]. Antioxidants, 2019, 8(7): 230. |
[2] | KOZUKUE N, KIM D S, CHOI S H, et al. Isomers of the tomato glycoalkaloids α-tomatine and dehydrotomatine: relationship to health benefits[J]. Molecules, 2023, 28(8): 3621. |
[3] | PUAH B P, JALIL J, ATTIQ A, et al. New insights into molecular mechanism behind anti-cancer activities of lycopene[J]. Molecules, 2021, 26(13): 3888. |
[4] | 王仁杰, 蔡红明, 夏海波, 等. 不同品种番茄的果实品质及感官评价[J]. 中国果菜, 2022, 42(7): 42-50. |
WANG R J, CAI H M, XIA H B, et al. Fruit quality and sensory evaluation of different tomato varieties[J]. China Fruit & Vegetable, 2022, 42(7): 42-50. (in Chinese with English abstract) | |
[5] | 郭娜, 吕广一, 赵熠, 等. 不同生物有机肥对日光温室番茄生长、产量和土壤养分的影响[J]. 蔬菜, 2023(1): 17-25. |
GUO N, LÜ G Y, ZHAO Y, et al. Effects of different bio-organic fertilizers on growth, yield of tomatoes and soil nutrients in solar greenhouse[J]. Vegetables, 2023(1): 17-25. (in Chinese with English abstract) | |
[6] | LIU J, WANG X W. Tomato diseases and pests detection based on improved yolo V3 convolutional neural network[J]. Frontiers in Plant Science, 2020, 11: 898. |
[7] | 唐微. 番茄常见病虫害危害症状及防治方法[J]. 现代农业科技, 2017(16): 109-110. |
TANG W. Symptoms and control methods of common tomato diseases and insect pests[J]. Modern Agricultural Science and Technology, 2017(16): 109-110. (in Chinese) | |
[8] | 裘辉, 魏延萍. 温室番茄病害的综合防治措施[J]. 吉林蔬菜, 2018(9): 29. |
QIU H, WEI Y P. Comprehensive control measures of tomato diseases in greenhouse[J]. Jilin Vegetable, 2018(9): 29. (in Chinese) | |
[9] | MEI L C, CHEN H M, DONG A Y, et al. Pesticide informatics platform (PIP): an international platform for pesticide discovery, residue, and risk evaluation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(22): 6617-6623. |
[10] | 张德锋, 高艳侠, 可小丽, 等. 贝莱斯芽孢杆菌LF01基因组序列分析及其代谢产物的生防作用[J]. 水产学报, 2022, 46(2): 196-206. |
ZHANG D F, GAO Y X, KE X L, et al. Genomic analysis of Bacillus velezensis LF01 strain and the biocontrol effect of its secondary metabolites[J]. Journal of Fisheries of China, 2022, 46(2): 196-206. (in Chinese with English abstract) | |
[11] | GRADY E N, MACDONALD J, HO M T, et al. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6[J]. BMC Microbiology, 2019, 19(1): 5. |
[12] | CHRISTIE G, SETLOW P. Bacillus spore germination: Knowns, unknowns and what we need to learn[J]. Cellular Signalling, 2020, 74: 109729. |
[13] | LIU H, WANG Z G, XU W H, et al. Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis[J]. Molecular Plant-Microbe Interactions, 2020, 33(10): 1222-1231. |
[14] | LI C Y, HU W C, PAN B, et al. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato[J]. Pedosphere, 2017, 27(6): 1135-1146. |
[15] | 李生樟, 刘昭, 杨瑞环, 等. 一株拮抗水稻条斑病菌的蜡样芽孢杆菌的分离和鉴定[J]. 江苏农业科学, 2020, 48(7): 127-136. |
LI S Z, LIU Z, YANG R H, et al. Isolation and identification of a Bacillus cereus strain against plant pathogenic Xanthomonas oryzae[J]. Jiangsu Agricultural Sciences, 2020, 48(7): 127-136. (in Chinese) | |
[16] | UPRETI R, THOMAS P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects[J]. Frontiers in Microbiology, 2015, 6: 255. |
[17] | 黄银, 马金彪, 李凯旋, 等. 新疆野果林苹果腐烂病病原菌鉴定及药用植物内生细菌对其抑菌效果[J]. 微生物学通报, 2023, 50(1): 175-184. |
HUANG Y, MA J B, LI K X, et al. Identification of pathogens causing apple Valsa canker in Xinjiang wild apple forests and antifungal effect of endophytic bacteria from medicinal plants on the pathogens[J]. Microbiology China, 2023, 50(1): 175-184. (in Chinese with English abstract) | |
[18] | 刘子瑶, 张岂源, 杨平, 等. 林下参内生生防细菌的分离鉴定及定殖能力[J]. 微生物学通报, 2023, 50(6): 2519-2531. |
LIU Z Y, ZHANG Q Y, YANG P, et al. Isolation and identification of endophytic biocontrol bacteria from understory Panax ginseng and study on colonization ability[J]. Microbiology China, 2023, 50(6): 2519-2531. (in Chinese with English abstract) | |
[19] | 宋光桃, 付美云, 张惠颖, 等. 5种植物内生菌的分离及其拮抗月季黑斑病菌的筛选[J]. 湖南生态科学学报, 2021, 8(4): 59-64. |
SONG G T, FU M Y, ZHANG H Y, et al. Isolation of endophytes from 5 plants and screening of their antagonistic strains to rose black spot disease[J]. Journal of Hunan Ecological Science, 2021, 8(4): 59-64. (in Chinese with English abstract) | |
[20] | 李同灵. 内生菌和根际微生物对三种牧草的生长和抗病作用研究[D]. 南充: 西华师范大学, 2020. |
LI T L. Study on the promoting and disease resistance of three forage endophytes and rhizosphere microorganisms[D]. Nanchong: China West Normal University, 2020. (in Chinese with English abstract) | |
[21] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
[22] | TAN S Y, DONG Y, LIAO H P, et al. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato[J]. Pest Management Science, 2013, 69(11): 1245-1252. |
[23] | 方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998. |
[24] | 王丽丽, 周旭东, 李国安, 等. 番茄青枯病病原菌拮抗菌株的筛选及其田间防控作用研究[J]. 植物保护, 2017, 43(1): 182-185, 223. |
WANG L L, ZHOU X D, LI G A, et al. Screening and identifying of antagonistic bacteria against Ralstonia solanacearum and the control effects on tomato bacterial wilt in the field[J]. Plant Protection, 2017, 43(1): 182-185, 223. (in Chinese with English abstract) | |
[25] | 成娜娜. 贝莱斯芽孢杆菌J-4对桃树根腐病的生防效果及其促生作用研究[D]. 泰安: 山东农业大学, 2021. |
CHENG N N. Study on the biocontrol effect and growth promotion of Bacillus velezensis J-4 on peach root rot[D]. Taian: Shandong Agricultural University, 2021. (in Chinese with English abstract) | |
[26] | DAS S, DASH H R, MANGWANI N, et al. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms[J]. Journal of Microbiological Methods, 2014, 103: 80-100. |
[27] | LIU Y, ŠTEFANIČ P, MIAO Y Z, et al. Housekeeping gene gyrA, a potential molecular marker for Bacillus ecology study[J]. AMB Express, 2022, 12(1): 133. |
[28] | 刘霞, 陆喆晓, 马紫程, 等. 贝莱斯芽孢杆菌Bv-303对水稻白叶枯病菌的拮抗活性及其应用[J]. 生物工程学报, 2023, 39(2): 741-754. |
LIU X, LU Z X, MA Z C, et al. Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae[J]. Chinese Journal of Biotechnology, 2023, 39(2): 741-754. (in Chinese with English abstract) | |
[29] | 戚菊峰. 铁皮石斛茎腐病病原菌鉴定及Bacillus velezensis D-12的防病促生研究[D]. 杭州: 浙江大学, 2021. |
QI J F. Study on the pathogen identification of stem rot in Dendrobium officinale and the plant growth promotion and biocontrol effect of Bacillus velezensis D-12[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[30] | FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018, 9: 2491. |
[31] | JIN P F, WANG Y, TAN Z, et al. Antibacterial activity and rice-induced resistance, mediated by C15 surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae[J]. Pesticide Biochemistry and Physiology, 2020, 169: 104669. |
[32] | 万宣伍, 田卉, 张伟, 等. 植物诱导抗性的机理及应用[J]. 植物医学, 2022, 1(1): 18-25. |
WAN X W, TIAN H, ZHANG W, et al. Mechanism and application of induced resistance in plant[J]. Plant Health and Medicine, 2022, 1(1): 18-25. (in Chinese with English abstract) | |
[33] | 裴冬丽, 张红岩, 张贺, 等. 干旱胁迫对番茄幼苗叶片SOD、POD和PAL活性的影响[J]. 吉林农业科学, 2015, 40(4): 83-86. |
PEI D L, ZHANG H Y, ZHANG H, et al. Effects of drought stress on SOD, POD and PAL activity in tomato seedling leaves[J]. Journal of Jilin Agricultural Sciences, 2015, 40(4): 83-86. (in Chinese with English abstract) |
[1] | 吴筱萌, 徐悦, 程鸿浩, 陈诗燕, 周夏芝, 邹运鼎, 毕守东. 六种茶园茶尺蠖与其蜘蛛类天敌的空间和数量关系[J]. 浙江农业学报, 2023, 35(6): 1349-1359. |
[2] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
[3] | 朱森林, 王丹媚, 唐秀梅, 陈瑞, 杨蓉, 徐月妹, 金璐懿, 任晴雯, 刘鹏, 罗军. 木霉水分散粒剂的培养条件优化及其对黄瓜枯萎病的防治效果[J]. 浙江农业学报, 2020, 32(6): 1009-1018. |
[4] | 冯江鹏, 邱莉萍, 梁秀燕, 陈碧秀, 夏海洋, 彭春龙, 钟永军. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5): 831-839. |
[5] | 黄俊, 钱诚, 吕要斌. 一种南方小花蝽产卵基质的高效利用方法[J]. 浙江农业学报, 2020, 32(3): 455-459. |
[6] | 林瑞, 任海英, 安笑笑, 郑锡良, 梁森苗, 张淑文, 戚行江. 生物有机肥对杨梅凋萎病防控及其树势恢复的影响[J]. 浙江农业学报, 2019, 31(7): 1096-1104. |
[7] | 赵燕燕, 田俊策, 郑许松, 徐红星, 鲁艳辉, 杨亚军, 臧连生, 吕仲贤. 酢浆草和车轴草作为螟黄赤眼蜂田间蜜源植物的可行性分析[J]. 浙江农业学报, 2017, 29(1): 106-112. |
[8] | 张建萍,段桂芳,杨爽,周勇军,陆永良*,余柳青. 微生物除草剂禾长蠕孢菌孢子助剂筛选[J]. 浙江农业学报, 2016, 28(1): 90-. |
[9] | 胡豹;楼洪兴;*. 我国农作物病虫害防治技术的专利战略与管理[J]. , 2014, 26(2): 0-495502. |
[10] | 蒲占湑;黄振东;胡秀荣;李红叶;. 六种杀菌剂对柑橘炭疽病菌的室内毒力和田间防治效果[J]. , 2014, 26(1): 0-126. |
[11] | 李星月;刘奇志*;杨道伟. 双孢蘑菇基质中隐杆线虫Caenorhabditis sp-CNM生防潜力研究[J]. , 2012, 24(6): 0-1063. |
[12] | 韩超;武贵元;刘爱新*;王玉军*. 吡咯伯克霍尔德氏菌A12筛选鉴定及其对烟草幼苗的促生作用[J]. , 2012, 24(5): 0-885. |
[13] | 黄永红;李春雨;魏岳荣;左存武;易干军;* . 韭菜对香蕉枯萎病菌的拮抗及其对盆栽香蕉枯萎病发生的抑制作用[J]. , 2011, 23(6): 0-1166. |
[14] | 耿锐梅;张建萍;余柳青 . 稻平脐蠕孢的分离、鉴定及对作物的安全性[J]. , 2008, 20(6): 0-450. |
[15] | 陈桂华;郑许松;盛仙俏;吴降星;张发成;吕仲贤. 四种防治模式对水稻主要害虫的防治效果及其经济效益分析[J]. , 2008, 20(5): 0-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||