浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2954-2965.DOI: 10.3969/j.issn.1004-1524.20221751
收稿日期:
2022-11-15
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
谭云峰(1997—),男,四川广安人,硕士研究生,主要从事农业机械与农业装备研究。E-mail:2898962681@qq.com
通讯作者:
*陈霖,E-mail:461769837@qq.com
基金资助:
TAN Yunfeng(), CHEN Lin(
), HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong
Received:
2022-11-15
Online:
2023-12-25
Published:
2023-12-27
摘要:
针对大豆脱粒装置在收获过程中易堵塞、籽粒损失率和破碎率高的问题,设计一种纵轴流柔性弯齿式大豆脱粒装置。本文阐述柔性脱粒元件及被动可转动式凹板筛的结构及工作原理,对脱粒弯齿进行受力分析,以EDEM和Recurdyn耦合仿真试验验证柔性脱粒元件在脱粒时与籽粒接触力的分析;通过响应面优化试验研究滚筒转速、脱粒间隙、喂入量对脱粒效果的影响,建立以籽粒夹带损失率和破碎率为响应值的多元二次回归模型。结果表明,滚筒转速为366.65 r·min-1、凹板间隙组合为20.78 mm×15.78 mm、喂入量为1.286 kg·s-1时脱粒装置脱粒性能最优,其平均夹带损失率为1.767%,破碎率为0.713%。通过田间试验验证满足实际作业需求。
中图分类号:
谭云峰, 陈霖, 胡森, 王键, 陈治帆, 吕小荣. 纵轴流柔性弯齿式大豆脱粒装置的设计与试验[J]. 浙江农业学报, 2023, 35(12): 2954-2965.
TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965.
图1 纵轴流柔性弯齿式大豆脱粒装置总体结构 1, 脱粒滚筒;2,导流板;3,外壳;4,机架;5,被动可转动凹板筛;6,传送带;7,收集盘;8,电机。
Fig.1 General structure of longitudinal-axial flow flexible bent-tooth soybean thresher 1, Threshing drum; 2, Guide plate; 3, Shell; 4, Rack; 5, Passively rotable concave sieve; 6, Conveyor belt; 7, Collection plate; 8, Motor.
图2 脱粒元件 1, 脱粒弯齿;2,限位底座;3,紧定螺钉;4,螺栓;5,指套;6,底座;7,螺帽;8,扭簧;9,辐条。
Fig.2 Threshing element 1, Degranulation curved teeth; 2, Limited seating; 3, Set screw; 4, Bolt; 5, Finger glove; 6, Base; 7, Nut; 8, Spring; 9, Spoke.
图3 脱粒弯齿受力示意图 Ft,弯齿受到来自物料的合外力; F n 1,螺栓对弯齿的支撑力; F n 2,扭簧对杆齿的作用力;β1,合外力Ft与水平方向的夹角;β2,扭簧对杆齿的作用力 F n 2与水平方向的夹角;β3,螺栓对弯齿的支撑力 F n 1与竖直方向上的夹角;θ,杆齿以螺栓为旋转中心逆时针转动角度;L,物料与脱粒弯齿接触点距离扭转中心。
Fig.3 Force diagram of threshing element Ft, The external forces of curved teeth subjected to the material; F n 1, The support force of the bolt on the bent teeth; F n 2, The force exerted by the torsion spring on the rod teeth; β1, The angle between the external force Ft and the horizontal direction; β2, The angle between the force F n 2 of the torsion spring on the rod teeth and the horizontal direction; β3, The angle between the support force F n 1 of the bolt on the curved teeth and the vertical direction; θ, The rod teeth rotate counterclockwise with the bolt as the center of rotation; L, The distance between the contact point of the material and the threshing bending tooth and the torsion center.
图5 物料在凹板筛侧运动受力示意图 ω,滚筒角速度;FN,物料受到凹板筛的打击力;μNFN,物料受到凹板筛的摩擦力;FS,物料受到脱粒元件的打击力;μSFS,物料受到脱粒元件的摩擦力;G,重力;β,物料运动螺旋角;V,物料运动速度;δ,脱粒元件对物料的作用角度。
Fig.5 The force diagram of the material moving on the screen side of concave plate ω, The angular speed of the roller; FN, The impact force of the material subjected to the concave sieve; μNFN, The friction of the material subjected to the concave screen; FS, The impact force of the material subjected to the threshing element; μSFS, The frictional force of the material subjected to the threshing element; G, Gravity; β, Spiral angle of material movement; V, Material movement speed; δ, The angle of action of the threshing element on the material.
材料 Materials | 参数 Parameter | 数值 Value | 材料 Materials | 参数 Parameter | 数值 Value |
---|---|---|---|---|---|
茎秆 | 泊松比Poisson’s ratio | 0.3 | 茎秆-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks | 密度Density/(kg·m-3) | 500 | Stalks-Seeds | 静摩擦系数Static friction coefficient | 0.50 |
弹性模量Elastic modulus/Pa | 6×108 | 滚动摩擦系数Rolling friction coefficient | 0.05 | ||
钢板 | 泊松比Poisson’s ratio | 0.3 | 籽粒-钢板 | 恢复系数Restitution coefficient | 0.56 |
Steel plate | 密度Density/(kg·m-3) | 7 800 | Seeds-steel | 静摩擦系数Static friction coefficient | 0.43 |
弹性模量Elastic modulus/Pa | 7×1010 | plate | 滚动摩擦系数Rolling friction coefficient | 0.01 | |
籽粒Seeds | 泊松比Poisson’s ratio | 0.25 | 茎秆-茎秆 | 恢复系数Restitution coefficient | 0.28 |
密度Density/(kg·m-3) | 1236 | Stalks-Stalks | 静摩擦系数Static friction coefficient | 0.38 | |
弹性模量Elastic modulus/Pa | 1.04×107 | 滚动摩擦系数Rolling friction coefficient | 0.01 | ||
茎秆-钢板 | 恢复系数Restitution coefficient | 0.68 | 籽粒-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks-steel | 静摩擦系数Static friction coefficient | 0.32 | 静摩擦系数Static friction coefficient | 0.50 | |
plate | 滚动摩擦系数Rolling friction coefficient | 0.012 | Seeds-Seeds | 滚动摩擦系数Rolling friction coefficient | 0.05 |
表1 离散元仿真接触参数
Table 1 Discrete element simulation of contact parameters
材料 Materials | 参数 Parameter | 数值 Value | 材料 Materials | 参数 Parameter | 数值 Value |
---|---|---|---|---|---|
茎秆 | 泊松比Poisson’s ratio | 0.3 | 茎秆-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks | 密度Density/(kg·m-3) | 500 | Stalks-Seeds | 静摩擦系数Static friction coefficient | 0.50 |
弹性模量Elastic modulus/Pa | 6×108 | 滚动摩擦系数Rolling friction coefficient | 0.05 | ||
钢板 | 泊松比Poisson’s ratio | 0.3 | 籽粒-钢板 | 恢复系数Restitution coefficient | 0.56 |
Steel plate | 密度Density/(kg·m-3) | 7 800 | Seeds-steel | 静摩擦系数Static friction coefficient | 0.43 |
弹性模量Elastic modulus/Pa | 7×1010 | plate | 滚动摩擦系数Rolling friction coefficient | 0.01 | |
籽粒Seeds | 泊松比Poisson’s ratio | 0.25 | 茎秆-茎秆 | 恢复系数Restitution coefficient | 0.28 |
密度Density/(kg·m-3) | 1236 | Stalks-Stalks | 静摩擦系数Static friction coefficient | 0.38 | |
弹性模量Elastic modulus/Pa | 1.04×107 | 滚动摩擦系数Rolling friction coefficient | 0.01 | ||
茎秆-钢板 | 恢复系数Restitution coefficient | 0.68 | 籽粒-籽粒 | 恢复系数Restitution coefficient | 0.55 |
Stalks-steel | 静摩擦系数Static friction coefficient | 0.32 | 静摩擦系数Static friction coefficient | 0.50 | |
plate | 滚动摩擦系数Rolling friction coefficient | 0.012 | Seeds-Seeds | 滚动摩擦系数Rolling friction coefficient | 0.05 |
材料Materials | 参数Parameter | 数值Value |
---|---|---|
籽粒-茎秆Seeds-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 5×108 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 4×108 | |
临界法向应力Critical normal stress/Pa | 200 000 | |
临界切向应力Critical tangential stress/Pa | 160 000 | |
黏结半径Bond radius/mm | 4.2 | |
茎秆-茎秆Stalks-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 1.5×1010 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 1.2×1010 | |
临界法向应力Critical normal stress/Pa | 1.3×107 | |
临界切向应力Critical tangential stress/Pa | 1.04×107 | |
黏结半径Bond radius/mm | 4.2 |
表2 颗粒间黏结参数
Table 2 Parameters of intergranular bond
材料Materials | 参数Parameter | 数值Value |
---|---|---|
籽粒-茎秆Seeds-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 5×108 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 4×108 | |
临界法向应力Critical normal stress/Pa | 200 000 | |
临界切向应力Critical tangential stress/Pa | 160 000 | |
黏结半径Bond radius/mm | 4.2 | |
茎秆-茎秆Stalks-stalks | 法向单位面积刚度Normal stiffness per unit area/(kg·m-3) | 1.5×1010 |
切向单位面积刚度Tangential stiffness per unit area/(kg·m-3) | 1.2×1010 | |
临界法向应力Critical normal stress/Pa | 1.3×107 | |
临界切向应力Critical tangential stress/Pa | 1.04×107 | |
黏结半径Bond radius/mm | 4.2 |
参数 Parameter | 范围 Scope | 均值 Mean |
---|---|---|
茎秆外径(大) | 7.13~7.75 | 7.36 |
Stem outside diameter (large)/mm | ||
茎秆外径(中) | 5.86~6.39 | 6.11 |
Stem outer diameter (middle)/mm | ||
茎秆外径(小) | 4.81~5.14 | 4.98 |
Stem outside diameter (small)/mm | ||
籽粒长轴 | 9.14~11.91 | 10.65 |
Long axis of grain/mm | ||
籽粒短轴 | 5.82~7.31 | 6.43 |
Short axis of grain/mm | ||
籽粒含水率 | 14.40~18.90 | 16.60 |
Grain moisture content/% |
表3 大豆植株基本参数
Table 3 Basic parameters of soybean plant
参数 Parameter | 范围 Scope | 均值 Mean |
---|---|---|
茎秆外径(大) | 7.13~7.75 | 7.36 |
Stem outside diameter (large)/mm | ||
茎秆外径(中) | 5.86~6.39 | 6.11 |
Stem outer diameter (middle)/mm | ||
茎秆外径(小) | 4.81~5.14 | 4.98 |
Stem outside diameter (small)/mm | ||
籽粒长轴 | 9.14~11.91 | 10.65 |
Long axis of grain/mm | ||
籽粒短轴 | 5.82~7.31 | 6.43 |
Short axis of grain/mm | ||
籽粒含水率 | 14.40~18.90 | 16.60 |
Grain moisture content/% |
编码值 Code | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance (B)/mm×mm | 喂入量 Feed amount (C)/(kg·s-1) |
---|---|---|---|
-1 | 350 | 15×10 | 1 |
0 | 400 | 20×15 | 2 |
1 | 450 | 25×20 | 3 |
表4 试验因素水平
Table 4 Level of test factors
编码值 Code | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance (B)/mm×mm | 喂入量 Feed amount (C)/(kg·s-1) |
---|---|---|---|
-1 | 350 | 15×10 | 1 |
0 | 400 | 20×15 | 2 |
1 | 450 | 25×20 | 3 |
序号No. | A | B | C | Y1/% | Y2/% |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 2.28 | 0.80 |
2 | 1 | 0 | 1 | 3.05 | 0.88 |
3 | -1 | -1 | 0 | 1.82 | 0.72 |
4 | 0 | 0 | 0 | 1.98 | 0.74 |
5 | 1 | 1 | 0 | 2.58 | 0.79 |
6 | 0 | 0 | 0 | 1.91 | 0.69 |
7 | -1 | 0 | -1 | 1.71 | 0.69 |
8 | 0 | 0 | 0 | 1.92 | 0.72 |
9 | 0 | 0 | 0 | 1.61 | 0.73 |
10 | 0 | -1 | -1 | 1.42 | 0.77 |
11 | -1 | 0 | 1 | 2.53 | 0.75 |
12 | 0 | 1 | 1 | 3.03 | 0.72 |
13 | 1 | 0 | -1 | 1.83 | 0.76 |
14 | 1 | -1 | 0 | 2.41 | 0.81 |
15 | 0 | 1 | -1 | 2.45 | 0.65 |
16 | 0 | 0 | 0 | 2.11 | 0.72 |
17 | -1 | 1 | 0 | 1.81 | 0.68 |
表5 试验设计方案及结果
Table 5 Test design scheme and results
序号No. | A | B | C | Y1/% | Y2/% |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 2.28 | 0.80 |
2 | 1 | 0 | 1 | 3.05 | 0.88 |
3 | -1 | -1 | 0 | 1.82 | 0.72 |
4 | 0 | 0 | 0 | 1.98 | 0.74 |
5 | 1 | 1 | 0 | 2.58 | 0.79 |
6 | 0 | 0 | 0 | 1.91 | 0.69 |
7 | -1 | 0 | -1 | 1.71 | 0.69 |
8 | 0 | 0 | 0 | 1.92 | 0.72 |
9 | 0 | 0 | 0 | 1.61 | 0.73 |
10 | 0 | -1 | -1 | 1.42 | 0.77 |
11 | -1 | 0 | 1 | 2.53 | 0.75 |
12 | 0 | 1 | 1 | 3.03 | 0.72 |
13 | 1 | 0 | -1 | 1.83 | 0.76 |
14 | 1 | -1 | 0 | 2.41 | 0.81 |
15 | 0 | 1 | -1 | 2.45 | 0.65 |
16 | 0 | 0 | 0 | 2.11 | 0.72 |
17 | -1 | 1 | 0 | 1.81 | 0.68 |
参数 Parameter | Y1/% | Y2/% | ||
---|---|---|---|---|
F值 F value | P值 P value | F值 F value | P值 P value | |
Model | 4.07 | 0.038 7 | 7.64 | 0.006 9 |
A | 6.11 | 0.042 7 | 30.11 | 0.000 9 |
B | 5.75 | 0.047 6 | 12.72 | 0.009 1 |
C | 18.50 | 0.003 6 | 14.75 | 0.006 4 |
AB | 0.099 0 | 0.762 2 | 0.150 5 | 0.709 6 |
AC | 0.488 9 | 0.507 0 | 1.35 | 0.282 6 |
BC | 0.239 5 | 0.639 5 | 0.602 2 | 0.463 2 |
A2 | 0.704 4 | 0.429 0 | 6.69 | 0.036 1 |
B2 | 0.896 6 | 0.375 2 | 0.039 6 | 0.847 9 |
C2 | 3.40 | 0.107 8 | 1.94 | 0.206 2 |
失拟项Lack of fit | 4.33 | 0.095 5 | 3.10 | 0.151 8 |
表6 方差分析
Table 6 Analysis of variance
参数 Parameter | Y1/% | Y2/% | ||
---|---|---|---|---|
F值 F value | P值 P value | F值 F value | P值 P value | |
Model | 4.07 | 0.038 7 | 7.64 | 0.006 9 |
A | 6.11 | 0.042 7 | 30.11 | 0.000 9 |
B | 5.75 | 0.047 6 | 12.72 | 0.009 1 |
C | 18.50 | 0.003 6 | 14.75 | 0.006 4 |
AB | 0.099 0 | 0.762 2 | 0.150 5 | 0.709 6 |
AC | 0.488 9 | 0.507 0 | 1.35 | 0.282 6 |
BC | 0.239 5 | 0.639 5 | 0.602 2 | 0.463 2 |
A2 | 0.704 4 | 0.429 0 | 6.69 | 0.036 1 |
B2 | 0.896 6 | 0.375 2 | 0.039 6 | 0.847 9 |
C2 | 3.40 | 0.107 8 | 1.94 | 0.206 2 |
失拟项Lack of fit | 4.33 | 0.095 5 | 3.10 | 0.151 8 |
编号 No. | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance(B)/ mm×mm | 喂入量 Feed amount(C)/ (kg·s-1) | 损失率 Loss rate (Y1)/% | 破碎率 Breakage rate (Y2)/% |
---|---|---|---|---|---|
1 | 366.65 | 20.78×15.78 | 1.286 | 1.79 | 0.69 |
2 | 366.65 | 20.78×15.78 | 1.286 | 1.75 | 0.73 |
3 | 366.65 | 20.78×15.78 | 1.286 | 1.76 | 0.72 |
平均值Average value | 366.65 | 20.78×15.78 | 1.286 | 1.767 | 0.713 |
表7 优化结果验证试验
Table 7 Optimization result validation test
编号 No. | 滚筒转速 Roller speed(A)/ (r·min-1) | 脱粒间隙 Threshing clearance(B)/ mm×mm | 喂入量 Feed amount(C)/ (kg·s-1) | 损失率 Loss rate (Y1)/% | 破碎率 Breakage rate (Y2)/% |
---|---|---|---|---|---|
1 | 366.65 | 20.78×15.78 | 1.286 | 1.79 | 0.69 |
2 | 366.65 | 20.78×15.78 | 1.286 | 1.75 | 0.73 |
3 | 366.65 | 20.78×15.78 | 1.286 | 1.76 | 0.72 |
平均值Average value | 366.65 | 20.78×15.78 | 1.286 | 1.767 | 0.713 |
[1] | 谢方平, 罗锡文, 卢向阳, 等. 柔性滚筒结构参数对水稻脱粒效果的影响试验[J]. 农机化研究, 2009, 31(9): 147-151. |
XIE F P, LUO X W, LU X Y, et al. Effect of roller structural parameter on flexible threshing character for paddy rice[J]. Journal of Agricultural Mechanization Research, 2009, 31(9): 147-151. (in Chinese with English abstract) | |
[2] | 刘广才. 不同间套作系统种间营养竞争的差异性及其机理研究[D]. 兰州: 甘肃农业大学, 2005. |
LIU G C. Difference and its mechanism of interspecific nutrition competition in different intercropping systems[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese with English abstract) | |
[3] | 赵贵玉, 张越杰. 黑龙江省大豆生产效率研究[J]. 吉林农业大学学报, 2009, 31(3): 350-354. |
ZHAO G Y, ZHANG Y J. A study on soybean productivity in Heilongjiang Province[J]. Journal of Jilin Agricultural University, 2009, 31(3): 350-354. (in Chinese with English abstract) | |
[4] | 石彦国. 调整产业结构确保大豆产业健康持续发展[J]. 中国食品学报, 2010, 10(4): 1-7. |
SHI Y G. Adjusting the industrial structure to ensure sustained and healthy development of soybean industry[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(4): 1-7. (in Chinese with English abstract) | |
[5] | 王红蕾. 黑龙江省大豆产业振兴发展路径分析[J]. 黑龙江农业科学, 2019(10): 103-106. |
WANG H L. Analysis on the development path of soybean industry revitalization in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2019(10): 103-106. (in Chinese with English abstract) | |
[6] | 亢江飞, 常丽丹, 李林, 等. 大豆机械化种植发展现状及对策分析[J]. 河北农机, 2020(6): 22. |
KANG J F, CHANG L D, LI L, et al. Development status and countermeasures of mechanized planting of soybean[J]. Hebei Agricultural Machinery, 2020(6): 22. (in Chinese) | |
[7] | 龙生云, 王明立. 从大豆种子的现状看精选种子的重要性[J]. 大豆通报, 2004(1): 11-12. |
LONG S Y, WANG M L. On the importance of selecting seeds from the present situation of soybean seeds[J]. Soybean Bulletin, 2004(1): 11-12. (in Chinese) | |
[8] | 牛元民. 浅谈大豆机械收割减少破碎技术[J]. 大豆科技, 2008(5): 28. |
NIU Y M. Techology for reducing breaking rate during soybean mechanical harvesing[J]. Soybean Science & Technology, 2008(5): 28. (in Chinese with English abstract) | |
[9] | TENG Y J, CHEN Y P, JIN C Q, et al. Design and test on the type of spiral cylinder-segmented concave threshing system[C]// 2019 Boston, Massachusetts July 7-July 10, 2019. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2019: 1. |
[10] | 樊晨龙, 崔涛, 张东兴, 等. 低损伤组合式玉米脱粒分离装置设计与试验[J]. 农业机械学报, 2019, 50(4): 113-123. |
FAN C L, CUI T, ZHANG D X, et al. Design and test of low-damage combined corn threshing and separating device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 113-123. (in Chinese with English abstract) | |
[11] | 谢方平, 罗锡文, 卢向阳, 等. 柔性杆齿滚筒脱粒机理[J]. 农业工程学报, 2009, 25(8): 110-114. |
XIE F P, LUO X W, LU X Y, et al. Threshing principle of flexible pole-teeth roller for paddy rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 110-114. (in Chinese with English abstract) | |
[12] | 王志明. 横置差速轴流脱分选系统工作机理及设计研究[D]. 西安: 长安大学, 2017. |
WANG Z M. Study on work mechanism and design of axial flow differential-speed threshing-separating-cleaning unit[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract) | |
[13] | 刘基. 大豆收获机低损伤脱粒机构设计与试验[D]. 北京: 中国农业科学院, 2017. |
LIU J. The design and experiment of low damage threshing mechanism of soybean harvester[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
[14] | 孙成龙, 左杰文, 卢富运, 等. 燕麦脱粒组合式轴流滚筒设计与试验[J]. 农机化研究, 2021, 43(6): 135-141, 151. |
SUN C L, ZUO J W, LU F Y, et al. Design and test of combined axial flow roller for oats threshing[J]. Journal of Agricultural Mechanization Research, 2021, 43(6): 135-141, 151. (in Chinese with English abstract) | |
[15] | WANG J W, LI Z W, HUSSAIN S, et al. Design and threshing outputs study of internal and external rotary roller buckwheat thresher[J]. INMATEH Agricultural Engineering, 2020, 60(1): 173-182. |
[16] | 段玥晨, 章定国, 洪嘉振. 作大范围运动柔性梁的一种碰撞动力学求解方法[J]. 机械工程学报, 2012, 48(19): 95-102. |
DUAN Y C, ZHANG D G, HONG J Z. Method for solving the impact problem of a flexible beam with large overall motion[J]. Journal of Mechanical Engineering, 2012, 48(19): 95-102. (in Chinese with English abstract) | |
[17] | QIAN Z J, JIN C Q, ZHANG D G. Multiple frictional impact dynamics of threshing process between flexible tooth and grain kernel[J]. Computers and Electronics in Agriculture, 2017, 141: 276-285. |
[18] | 陈美舟, 徐广飞, 王传旭, 等. 纵轴流辊式组合玉米柔性脱粒分离装置设计与试验[J]. 农业机械学报, 2020, 51(10): 123-131. |
CHEN M Z, XU G F, WANG C X, et al. Design and experiment of roller-type combined longitudinal axial flow flexible threshing and separating device for corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 123-131. (in Chinese with English abstract) | |
[19] | 陈德俊, 陈霓, 姜喆雄, 等. 国外水稻联合收割机新技术及相关理论研究[M]. 镇江: 江苏大学出版社, 2015. |
[20] | 宋志才, 刁培松, 陈美舟, 等. 纵轴流玉米脱粒分离装置设计与试验[J]. 农机化研究, 2022, 44(2): 58-66. |
SONG Z C, DIAO P S, CHEN M Z, et al. Analysis design and test of longitudinal flow corn threshing and separating plant[J]. Journal of Agricultural Mechanization Research, 2022, 44(2): 58-66. (in Chinese with English abstract) | |
[21] | XU T Y, YU J Q, YU Y J, et al. A modelling and verification approach for soybean seed particles using the discrete element method[J]. Advanced Powder Technology, 2018, 29(12): 3274-3290. |
[22] | YAN D X, YU J Q, WANG Y, et al. A general modelling method for soybean seeds based on the discrete element method[J]. Powder Technology, 2020, 372: 212-226. |
[23] | 邱轶兵. 试验设计与数据处理[M]. 合肥: 中国科学技术大学出版社, 2009. |
[24] | 耿端阳, 张道林, 王相友. 新编农业机械学[M]. 北京: 国防工业出版社, 2011. |
[25] | 杨德旭, 姜德龙, 沈永哲, 等. 切轴流式双滚筒大豆种子脱粒机设计与试验[J]. 农业机械学报, 2017, 48(9): 102-110. |
YANG D X, JIANG D L, SHEN Y Z, et al. Design and test on soybean seed thresher with tangential-axial flow double-roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 102-110. (in Chinese with English abstract) | |
[26] | 孙博, 曹肆林, 卢勇涛, 等. “张持”式顺向残膜捡拾机构的设计与试验[J]. 干旱地区农业研究, 2020, 38(5): 252-258. |
SUN B, CAO S L, LU Y T, et al. Design and test of open-hold forward rotation residual film machine[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 252-258. (in Chinese with English abstract) |
No related articles found! |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 346
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||