浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 859-869.DOI: 10.3969/j.issn.1004-1524.20230377
收稿日期:
2023-03-22
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
刘冲(1979—),男,陕西西安人,硕士,讲师,研究方向为园林花卉学与园林绿化废弃物资源化利用。E-mail: liuchong0627@163.com
通讯作者:
*张晓曦,E-mail:zhangxiaoxi712100@gmail.com
基金资助:
LIU Chong(), WANG Yiren, ZHOU Wenxing, ZHANG Xiaoxi(
)
Received:
2023-03-22
Online:
2024-04-25
Published:
2024-04-29
Contact:
ZHANG Xiaoxi
摘要:
采用室内模拟试验,研究了国槐废弃物分别与侧柏、云杉、油松、元宝槭和刺柏等5种常见园林绿化植物废弃物等质量混合对其修复石油污染土壤效果的影响,以期为合理利用绿化废弃物资源修复石油污染土壤提供理论依据。结果表明:国槐分别与侧柏、云杉、元宝槭或刺柏废弃物混合的添加形式普遍能够显著(P<0.05)强化对石油(至少是其饱和烃组分)的降解效率,提高土壤脲酶、碱性磷酸酶和脱氢酶活性,但上述混合处理普遍不影响甚至会削弱绿化废弃物对土壤速效氮、磷养分含量的提高效果。国槐与油松废弃物的混合添加形式对所有方面的修复效果普遍产生拮抗削弱。混合绿化废弃物中较高的氮、磷、氨基酸和有机酸含量有利于其降解石油或其部分组分,前三者同时有利于提高土壤速效氮素(主要是铵态氮)含量,及脲酶和脱氢酶活性;较高的酚类物质含量有助于提高土壤转化酶、碱性磷酸酶、过氧化氢酶活性;而较高的内部化学分异和萜类物质含量则分别不利于其降解饱和烃组分以及提高土壤脲酶和过氧化氢酶活性。总体而言,以适当的组合形式添加绿化废弃物可以强化其对石油污染土壤的修复效果。
中图分类号:
刘冲, 王羿人, 周雯星, 张晓曦. 国槐与其他树种绿化废弃物混合施用对石油污染土壤修复效果的影响[J]. 浙江农业学报, 2024, 36(4): 859-869.
LIU Chong, WANG Yiren, ZHOU Wenxing, ZHANG Xiaoxi. Effects of mixed addition of greenery wastes from Styphnolobium japonicum and other plants on remediation effects on petroleum-polluted soil[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 859-869.
绿化废弃物 Greenery waste | 碳含量 C content/ (g·kg-1) | 氮含量 N content/ (g·kg-1) | 磷含量 P content/ (g·kg-1) | 水溶总酚含量 Soluble phenols content/ (g·kg-1) | 可溶性糖含量 Soluble saccharides content/(g·kg-1) | 萜类含量 Terpenoids content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 黄酮含量 Flavonoids content/ (g·kg-1) | 有机酸含量 Organic acids content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
国槐 Styphnolobium japonicum | 362.83± 14.15 b | 23.86± 0.75 a | 1.37± 0.06 ab | 7.28± 0.24 d | 1.11± 0.03 d | 1.74± 0.29 d | 7.99± 0.01 a | 7.02± 1.30 d | 5.87± 0.48 b |
侧柏 Platycladus orientalis | 436.23± 15.32 a | 10.82± 0.52 b | 0.95± 0.06 b | 17.00± 2.04 c | 2.04± 0.24 c | 33.66± 8.93 c | 1.73± 0.02 d | 37.28± 8.28 c | 2.48± 0.07 cd |
云杉 Picea asperata | 261.76± 9.15 c | 13.20± 2.24 b | 1.57± 0.23 a | 21.72± 0.48 b | 4.65± 0.56 a | 43.11± 2.32 c | 0.89± 0.15 e | 84.81± 2.72 a | 11.27± 0.27 a |
油松 Pinus tabuliformis | 274.19± 11.88 c | 5.76± 0.19 c | 0.12± 0.01 c | 19.31± 0.51 bc | 2.91± 0.28 b | 93.91± 7.24 a | 0.81± 0.11 e | 60.74± 4.29 b | 3.62± 0.36 c |
元宝槭 Acer truncatum | 240.30± 17.72 c | 19.36± 2.92 a | 1.06± 0.01 b | 25.79± 1.29 a | 2.96± 0.09 b | 60.63± 6.43 b | 7.23± 0.12 b | 70.73± 0.96 b | 6.62± 0.64 b |
刺柏 Juniperus formosana | 439.31± 25.76 a | 10.37± 0.24 bc | 1.57± 0.30 a | 3.71± 0.06 e | 1.17± 0.09 d | 97.22± 1.72 a | 3.69± 0.02 c | 13.31± 0.44 d | 2.21± 0.18 d |
表1 供试绿化废弃物的部分元素与代谢产物含量
Table 1 Content of nutrient elements and metabolites of the tested greenery wastes
绿化废弃物 Greenery waste | 碳含量 C content/ (g·kg-1) | 氮含量 N content/ (g·kg-1) | 磷含量 P content/ (g·kg-1) | 水溶总酚含量 Soluble phenols content/ (g·kg-1) | 可溶性糖含量 Soluble saccharides content/(g·kg-1) | 萜类含量 Terpenoids content/ (g·kg-1) | 氨基酸含量 Amino acids content/ (mg·kg-1) | 黄酮含量 Flavonoids content/ (g·kg-1) | 有机酸含量 Organic acids content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
国槐 Styphnolobium japonicum | 362.83± 14.15 b | 23.86± 0.75 a | 1.37± 0.06 ab | 7.28± 0.24 d | 1.11± 0.03 d | 1.74± 0.29 d | 7.99± 0.01 a | 7.02± 1.30 d | 5.87± 0.48 b |
侧柏 Platycladus orientalis | 436.23± 15.32 a | 10.82± 0.52 b | 0.95± 0.06 b | 17.00± 2.04 c | 2.04± 0.24 c | 33.66± 8.93 c | 1.73± 0.02 d | 37.28± 8.28 c | 2.48± 0.07 cd |
云杉 Picea asperata | 261.76± 9.15 c | 13.20± 2.24 b | 1.57± 0.23 a | 21.72± 0.48 b | 4.65± 0.56 a | 43.11± 2.32 c | 0.89± 0.15 e | 84.81± 2.72 a | 11.27± 0.27 a |
油松 Pinus tabuliformis | 274.19± 11.88 c | 5.76± 0.19 c | 0.12± 0.01 c | 19.31± 0.51 bc | 2.91± 0.28 b | 93.91± 7.24 a | 0.81± 0.11 e | 60.74± 4.29 b | 3.62± 0.36 c |
元宝槭 Acer truncatum | 240.30± 17.72 c | 19.36± 2.92 a | 1.06± 0.01 b | 25.79± 1.29 a | 2.96± 0.09 b | 60.63± 6.43 b | 7.23± 0.12 b | 70.73± 0.96 b | 6.62± 0.64 b |
刺柏 Juniperus formosana | 439.31± 25.76 a | 10.37± 0.24 bc | 1.57± 0.30 a | 3.71± 0.06 e | 1.17± 0.09 d | 97.22± 1.72 a | 3.69± 0.02 c | 13.31± 0.44 d | 2.21± 0.18 d |
图1 不同处理下石油及其饱和烃、芳香烃和非烃类组分的降解率 Nat,自然衰减对照;C1~C5,分别表示国槐与侧柏、云杉、油松、元宝槭、刺柏的绿化废弃物混合添加处理后的指标实测值;P1~P5,分别代表对应国槐与侧柏、云杉、油松、元宝槭、刺柏的绿化废弃物混合添加处理后的理论预测值。图中柱上无相同字母的表示处理间差异显著(P<0.05);标“*”或“**”的表示混合废弃物处理的实测值与对应的预测值间差异显著(P<0.05)或极显著(P<0.01)。n=3。SHs,饱和烃;AHs,芳香烃;NONHs,非烃类物质。下同。
Fig.1 Degradation rate of petroleum, saturated and aromatic hydrocarbons and non-hydrocarbon substances in soil under treatments Nat, Control of natural attenuation; C1-C5, The measured values under treatments using the mixture of greenery wastes of Styphnolobium japonicum and those from Platycladus orientalis, Picea asperata, Pinus tabuliformis, Acer truncatum or Juniperus formosana, respectively; P1-P5, The corresponding predicted values under treatments using the mixture of greenery wastes of S. japonicum and those from P. orientalis, P. asperata, P. tabuliformis, A. truncatum or J. formosana, respectively. Bars marked without the same letters indicate significant difference within treatments at P<0.05, while those marked with “*” or “**” symbols indicate significant differences between the measured and predicted values for the same treatment at P<0.05 or P<0.01. n=3. SHs, Saturated hydrocarbons; AHs, Aromatic hydrocarbons; NONHs, Non-hydrocarbon substances. The same as below.
图2 不同处理的土壤速效养分含量 Unc,未污染土壤;Cont,污染土壤,下同。
Fig.2 Contents of available nutrients in soil under treatments Unc, Uncontaminated soil; Cont, Contaminated soil. The same as below.
因素 Factor | 石油降解率 Petroleum degradation rate | 饱和烃 降解率 SHs degradation rate | 芳香烃 降解率 AHs degradation rate | 非烃类物质 降解率 NONHs degradation rate | 土壤硝态 氮含量 Nitrate N content in soil | 土壤铵态 氮含量 Ammonium N content in soil | 土壤有效 磷含量 Available P content in soil | 土壤转化 酶活性 Invertase activity | 土壤碱性磷 酸酶活性 Alkaline phosphatase activity | 土壤脲 酶活性 Urease activity | 土壤过氧化 氢酶活性 Catalase activity | 土壤脱氢 酶活性 Dehydrogenase activity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
碳含量 | 0.32 | 0.62 | 0.55 | 0.01 | 0.99 | 0.77 | - | 1.29- | 1.36- | 0.17 | 1.02+ | 0.28 |
C content | ||||||||||||
氮含量 | 1.84+ | 1.57+ | 1.69+ | 1.84+ | 0.38 | 1.08+ | - | 0.89 | 0.46 | 1.45+ | 0.51 | 1.62+ |
N content | ||||||||||||
磷含量 | 1.28+ | 1.03+ | 1.35+ | 1.88+ | 1.05+ | 1.36+ | - | 0.22 | 1.12- | 1.74+ | 0.68 | 1.30+ |
P content | ||||||||||||
水溶总酚含量 | 0.45 | 0.75 | 0.64 | 0.24 | 1.46- | 1.02- | - | 1.14+ | 1.45+ | 0.04 | 1.32+ | 0.33 |
Soluble phenols content | ||||||||||||
可溶性糖含量 | 0.49 | 0.83 | 0.56 | 0.32 | 1.10- | 0.88 | - | 1.23+ | 1.03- | 0.17 | 0.88 | 0.17 |
Soluble saccharides content | ||||||||||||
萜类含量 | 0.03 | 0.63 | 0.73 | 0.49 | 1.05+ | 0.56 | - | 0.12 | 0.46 | 1.10- | 1.68- | 0.66 |
Terpenoids content | ||||||||||||
氨基酸含量 | 1.50+ | 1.28+ | 1.21+ | 0.68 | 0.41 | 1.11+ | - | 0.77 | 0.77 | 1.07+ | 0.43 | 1.69+ |
Amino acids content | ||||||||||||
黄酮含量 | 0.50 | 0.77 | 0.61 | 0.19 | 1.24- | 0.92 | - | 1.45+ | 1.17+ | 0.04 | 0.96 | 0.29 |
Flavonoids content | ||||||||||||
有机酸含量 | 0.22 | 0.48 | 1.08+ | 1.23+ | 0.98 | 0.60 | - | 1.24+ | 0.93 | 0.85 | 1.15- | 0.92 |
Organic acids content | ||||||||||||
化学离散度 | 1.37- | 1.41- | 0.88 | 0.82 | 0.81 | 1.35- | - | 0.65 | 0.69 | 1.33- | 0.68 | 1.13- |
Chemical dispersion |
表2 土壤指标对应的绿化废弃物化学指标的变量投影重要值
Table 2 The variables project significant values of the corresponding chemical traits of greenery waste to each soil indicator
因素 Factor | 石油降解率 Petroleum degradation rate | 饱和烃 降解率 SHs degradation rate | 芳香烃 降解率 AHs degradation rate | 非烃类物质 降解率 NONHs degradation rate | 土壤硝态 氮含量 Nitrate N content in soil | 土壤铵态 氮含量 Ammonium N content in soil | 土壤有效 磷含量 Available P content in soil | 土壤转化 酶活性 Invertase activity | 土壤碱性磷 酸酶活性 Alkaline phosphatase activity | 土壤脲 酶活性 Urease activity | 土壤过氧化 氢酶活性 Catalase activity | 土壤脱氢 酶活性 Dehydrogenase activity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
碳含量 | 0.32 | 0.62 | 0.55 | 0.01 | 0.99 | 0.77 | - | 1.29- | 1.36- | 0.17 | 1.02+ | 0.28 |
C content | ||||||||||||
氮含量 | 1.84+ | 1.57+ | 1.69+ | 1.84+ | 0.38 | 1.08+ | - | 0.89 | 0.46 | 1.45+ | 0.51 | 1.62+ |
N content | ||||||||||||
磷含量 | 1.28+ | 1.03+ | 1.35+ | 1.88+ | 1.05+ | 1.36+ | - | 0.22 | 1.12- | 1.74+ | 0.68 | 1.30+ |
P content | ||||||||||||
水溶总酚含量 | 0.45 | 0.75 | 0.64 | 0.24 | 1.46- | 1.02- | - | 1.14+ | 1.45+ | 0.04 | 1.32+ | 0.33 |
Soluble phenols content | ||||||||||||
可溶性糖含量 | 0.49 | 0.83 | 0.56 | 0.32 | 1.10- | 0.88 | - | 1.23+ | 1.03- | 0.17 | 0.88 | 0.17 |
Soluble saccharides content | ||||||||||||
萜类含量 | 0.03 | 0.63 | 0.73 | 0.49 | 1.05+ | 0.56 | - | 0.12 | 0.46 | 1.10- | 1.68- | 0.66 |
Terpenoids content | ||||||||||||
氨基酸含量 | 1.50+ | 1.28+ | 1.21+ | 0.68 | 0.41 | 1.11+ | - | 0.77 | 0.77 | 1.07+ | 0.43 | 1.69+ |
Amino acids content | ||||||||||||
黄酮含量 | 0.50 | 0.77 | 0.61 | 0.19 | 1.24- | 0.92 | - | 1.45+ | 1.17+ | 0.04 | 0.96 | 0.29 |
Flavonoids content | ||||||||||||
有机酸含量 | 0.22 | 0.48 | 1.08+ | 1.23+ | 0.98 | 0.60 | - | 1.24+ | 0.93 | 0.85 | 1.15- | 0.92 |
Organic acids content | ||||||||||||
化学离散度 | 1.37- | 1.41- | 0.88 | 0.82 | 0.81 | 1.35- | - | 0.65 | 0.69 | 1.33- | 0.68 | 1.13- |
Chemical dispersion |
[1] | ERGOZHIN Y, DZHUSIPBEKOV U, TELTAYEV B, et al. Crude oil contaminated soil: its neutralization and use[J]. Sustainability, 2020, 12(8): 3087. |
[2] | 郑瑾, 付雅丽, 宋权威, 等. 微生物强化修复石油污染土壤的研究进展[J]. 生物工程学报, 2021, 37(10): 3622-3635. |
ZHENG J, FU Y L, SONG Q W, et al. Advances in the bioaugmentation-assisted remediation of petroleum contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3622-3635. (in Chinese with English abstract) | |
[3] | 惠云芳, 王鸿飞. 石油污染土壤的生物修复研究进展[J]. 西北农业学报, 2018, 27(4): 451-458. |
HUI Y F, WANG H F. Progress on bioremediation in oil-contaminated soil[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4): 451-458. (in Chinese with English abstract) | |
[4] | KOSHLAF E, SHAHSAVARI E, ABURTO-MEDINA A, et al. Bioremediation potential of diesel-contaminated Libyan soil[J]. Ecotoxicology and Environmental Safety, 2016, 133: 297-305. |
[5] | SHAHSAVARI E, ADETUTU E M, BALL A S. Phytoremediation and necrophytoremediation of petrogenic hydrocarbon-contaminated soils[M]//ANSARI A, GILL S, GILL R, et al. Phytoremediation. Cham: Springer, 2015: 321-334. |
[6] | KOSHLAF E, SHAHSAVARI E, HALEYUR N, et al. Impact of necrophytoremediation on petroleum hydrocarbon degradation, ecotoxicity and soil bacterial community composition in diesel-contaminated soil[J]. Environmental Science and Pollution Research International, 2020, 27(25): 31171-31183. |
[7] | WU Z J, DONG H J, ZOU L D, et al. Enriched microbial community in bioaugmentation of petroleum-contaminated soil in the presence of wheat straw[J]. Applied Biochemistry and Biotechnology, 2011, 164(7): 1071-1082. |
[8] | LLADÓ S, COVINO S, SOLANAS A M, et al. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil[J]. Journal of Hazardous Materials, 2015, 283: 35-43. |
[9] | 张晓曦, 张玲玲, 雷航宇, 等. 草本凋落物与尿素联合修复对油污土壤生物化学性质的影响[J]. 生态学报, 2020, 40(8): 2715-2725. |
ZHANG X X, ZHANG L L, LEI H Y, et al. Effects of combined remediation using grass litters and urea on the biochemical properties of petroleum-contaminated soil[J]. Acta Ecologica Sinica, 2020, 40(8): 2715-2725. (in Chinese with English abstract) | |
[10] | HAN X M, HU H W, SHI X Z, et al. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil[J]. Chemosphere, 2017, 172: 286-293. |
[11] | 侯爽爽, 吴蔓莉, 肖贺月, 等. 不同污染时长土壤中石油烃的生物去除特性及影响因素[J]. 农业环境科学学报, 2021, 40(5): 1034-1042. |
HOU S S, WU M L, XIAO H Y, et al. Biological removal efficiency and influencing factors of petroleum hydrocarbons in soil with different polluted time[J]. Journal of Agro-Environment Science, 2021, 40(5): 1034-1042. (in Chinese with English abstract) | |
[12] | 覃宇, 张丹桔, 李勋, 等. 马尾松与阔叶树种混合凋落叶分解过程中总酚和缩合单宁的变化[J]. 应用生态学报, 2018, 29(7): 2224-2232. |
QIN Y, ZHANG D J, LI X, et al. Changes of total phenols and condensed tannins during the decomposition of mixed leaf litter of Pinus massoniana and broad-leaved trees[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2224-2232. (in Chinese with English abstract) | |
[13] | KOU L, JIANG L, HÄTTENSCHWILER S, et al. Diversity-decomposition relationships in forests worldwide[J]. eLife, 2020, 9: e55813. |
[14] | LI Q, ZHAO G Y, CAO G M, et al. Non-additive effects of leaf litter mixtures from Robinia pseudoacacia and ten tree species on soil properties[J]. Journal of Sustainable Forestry, 2020, 39(8): 771-784. |
[15] | CHEN Y C, MA S Q, JIANG H M, et al. Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species[J]. Geoderma, 2020, 377: 114577. |
[16] | 丁正, 梁晶, 方海兰. 绿化植物废弃物强化草坪修复石油烃污染土壤研究[J]. 环境科学与技术, 2016, 39(5): 85-89. |
DING Z, LIANG J, FANG H L. Greenery waste strengthening remediation effect of lawn grass on total petrol hydrocarbons contaminated soil[J]. Environmental Science & Technology, 2016, 39(5): 85-89. (in Chinese with English abstract) | |
[17] | 朱文英, 唐景春. 小麦秸秆生物炭对石油烃污染土壤的修复作用[J]. 农业资源与环境学报, 2014, 31(3): 259-264. |
ZHU W Y, TANG J C. Remediation of wheat-straw-biochar on petroleum-polluted soil[J]. Journal of Agricultural Resources and Environment, 2014, 31(3): 259-264. (in Chinese with English abstract) | |
[18] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[19] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
[20] | 于齐, 张晓曦, 刘增文, 等. 陕北石油区城市绿化树木枯落叶对油污土壤的修复效应[J]. 农业环境科学学报, 2015, 34(1): 50-57. |
YU Q, ZHANG X X, LIU Z W, et al. Remediation effects of urban greening-tree litters on petroleum-contaminated soil in oil producing region of northern Shaanxi[J]. Journal of Agro-Environment Science, 2015, 34(1): 50-57. (in Chinese with English abstract) | |
[21] | KOSHLAF E, SHAHSAVARI E, HALEYUR N, et al. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation[J]. Geoderma, 2019, 338: 216-225. |
[22] | CAI D, YANG X H, WANG S Z, et al. Effects of dissolved organic matter derived from forest leaf litter on biodegradation of phenanthrene in aqueous phase[J]. Journal of Hazardous Materials, 2017, 324: 516-525. |
[23] | ZHEN M N, TANG J C, LI C, et al. Rhamnolipid-modified biochar-enhanced bioremediation of crude oil-contaminated soil and mediated regulation of greenhouse gas emission in soil[J]. Journal of Soils and Sediments, 2021, 21(1): 123-133. |
[24] | STEFFEN K T. Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi[D]. Helsinki: University of Helsinki, 2003. |
[25] | CHEN B L, YUAN M X. Enhanced dissipation of polycyclic aromatic hydrocarbons in the presence of fresh plant residues and their extracts[J]. Environmental Pollution, 2012, 161: 199-205. |
[26] | 张晓曦, 周雯星, 李佳佳, 等. 早期分解中油松与阔叶树种凋落叶混合分解效应及其相互影响[J]. 植物科学学报, 2019, 37(3): 303-311. |
ZHANG X X, ZHOU W X, LI J J, et al. Mixed decomposition and interspecific effects during early decomposition of litter mixtures of Pinus tabuliformis Carrière and broadleaved species[J]. Plant Science Journal, 2019, 37(3): 303-311. (in Chinese with English abstract) | |
[27] | 张晓曦, 周雯星, 王丽洁, 等. 模拟氮沉降对凋落物早期混合分解中相互作用的影响[J]. 生态学杂志, 2022, 41(9): 1708-1716. |
ZHANG X X, ZHOU W X, WANG L J, et al. Influences of simulated nitrogen deposition on mixing effects of litter decomposition at early stage[J]. Chinese Journal of Ecology, 2022, 41(9): 1708-1716. (in Chinese with English abstract) | |
[28] | CHOMEL M, GUITTONNY-LARCHEVÊQUE M, DESROCHERS A, et al. Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations[J]. Plant and Soil, 2016, 398(1): 229-241. |
[29] | HUANG Y J, PAN H, WANG Q L, et al. Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust[J]. Chemosphere, 2019, 224: 265-271. |
[30] | SIVARAM A K, LOGESHWARAN P, LOCKINGTON R, et al. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria[J]. Chemosphere, 2019, 222: 132-140. |
[31] | CHEN Y C, MA S Q, SUN J, et al. Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil[J]. Soil Biology and Biochemistry, 2017, 109: 124-134. |
[32] | 吴彬彬, 卢滇楠, 刘铮. 石油污染土壤生物修复过程中氮循环功能基因的动态检测[J]. 环境科学, 2012, 33(6): 2068-2074. |
WU B B, LU D N, LIU Z. Dynamic changes in functional genes for nitrogen cycle during bioremediation of petroleum-contaminated soil[J]. Environmental Science, 2012, 33(6): 2068-2074. (in Chinese with English abstract) | |
[33] | ZHANG X X, WANG L J, ZHOU W X, et al. Mixing of plant litters strengthens their remediation effects on crude oil-contaminated soil[J]. Environmental Science and Pollution Research International, 2021, 28(10): 12753-12765. |
[34] | 赵绚, 何兴东, 张京磊. 改良剂对柴油污染土壤中黑麦草生理代谢的调节[J]. 农业资源与环境学报, 2017, 34(4): 384-389. |
ZHAO X, HE X D, ZHANG J L. Effects of modifiers on physiological metabolism of Lolium perenne seedlings in diesel-polluted soils[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 384-389. (in Chinese with English abstract) | |
[35] | THAVAMANI P, MALIK S, BEER M, et al. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals[J]. Journal of Environmental Management, 2012, 99: 10-17. |
[36] | 杨建强, 刁华杰, 胡姝娅, 等. 氮磷添加对盐渍化草地土壤微生物特征的影响[J]. 环境科学, 2021, 42(12): 6058-6066. |
YANG J Q, DIAO H J, HU S Y, et al. Effects of nitrogen and phosphorus additions on soil microorganisms in saline-alkaline grassland[J]. Environmental Science, 2021, 42(12): 6058-6066. (in Chinese with English abstract) | |
[37] | ADAMCZYK B, KARONEN M, ADAMCZYK S, et al. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest[J]. Soil Biology and Biochemistry, 2017, 107: 60-67. |
[1] | 马其雪, 孙向阳, 李素艳, 李松, 刘源鑫, 周文洁. 园林绿化废弃物堆肥对铅、锌污染土壤上小白菜生理特性的影响[J]. 浙江农业学报, 2020, 32(11): 2027-2034. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||