浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2184-2192.DOI: 10.3969/j.issn.1004-1524.20230994
• 综述 • 上一篇
俞沁佩1,2(), 孙鹂2, 张淑文2, 俞浙萍2, 郑锡良2, 戚行江1,2,*(
)
收稿日期:
2023-08-21
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
戚行江,E-mail: qixj@mail.zaas.cn通讯作者:
戚行江,E-mail: 基金资助:
YU Qinpei1,2(), SUN Li2, ZHANG Shuwen2, YU Zheping2, ZHENG Xiliang2, QI Xingjiang1,2,*(
)
Received:
2023-08-21
Online:
2024-09-25
Published:
2024-09-30
摘要:
β-半乳糖苷酶属于糖苷水解酶GH35家族,参与了植物不同生长阶段细胞壁的合成与修饰,尤其对肉质水果发育和成熟过程中多糖的裂解具有重要作用。文章概述了β-半乳糖苷酶的蛋白功能、不同亚型、亚细胞定位和活性规律,重点阐述了该基因家族在园艺作物果实质地变化中的作用及相关研究进展。
中图分类号:
俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192.
YU Qinpei, SUN Li, ZHANG Shuwen, YU Zheping, ZHENG Xiliang, QI Xingjiang. Research progress of β-galactosidase in fruits of horticultural crops[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2184-2192.
[1] | PRASANNA V, PRABHA T N, THARANATHAN R N. Fruit ripening phenomena-an overview[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(1): 1-19. |
[2] |
WANG D D, YEATS T H, ULUISIK S, et al. Fruit softening: revisiting the role of pectin[J]. Trends in Plant Science, 2018, 23(4): 302-310.
DOI PMID |
[3] | SHI Y N, LI B J, GRIERSON D, et al. Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants[J]. Plant Physiology, 2023, 192(3): 1671-1683. |
[4] |
BRUMMELL D A. Cell wall disassembly in ripening fruit[J]. Functional Plant Biology, 2006, 33(2): 103-119.
DOI PMID |
[5] | FISCHER R L, BENNETT A B. Role of cell wall hydrolases in fruit ripening[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 675-703. |
[6] |
PANIAGUA C, POSÉ S, MORRIS V J, et al. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy[J]. Annals of Botany, 2014, 114(6): 1375-1383.
DOI PMID |
[7] | 刘佩卓, 谷超. 不同品种桃果实中内切多聚半乳糖醛酸酶EndoPG基因的表达分析[J]. 植物学研究, 2018, 7(4):463-470. |
LIU P Z, GU C. Expression analysis of EndoPG genes in peach fruits of different cultivars[J]. Botanical Research, 2018, 7(4):463-470. (in Chinese) | |
[8] | REN Y Y, SUN P P, WANG X X, et al. Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in Annona squamosa during storage[J]. Postharvest Biology and Technology, 2020, 166: 111203. |
[9] | 张嵩, 张光伦, 曾秀丽. 纤维素酶和多聚半乳糖醛酸酶与果实成熟[J]. 果树学报, 2005, 22(5): 532-536. |
ZHANG S, ZHANG G L, ZENG X L. Advances in research on the effects of polygalacturonase and cellulase on fruit ripening[J]. Journal of Fruit Science, 2005, 22(5): 532-536. (in Chinese with English abstract) | |
[10] | BAN Q Y, HAN Y, MENG K, et al. Characterization of β-galactosidase genes involved in persimmon growth and fruit ripening and in response to propylene and 1-methylcyclopropene[J]. Journal of Plant Growth Regulation, 2016, 35(4): 1025-1035. |
[11] | LIU S M, HUANG H, HUBER D J, et al. Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin[J]. Postharvest Biology and Technology, 2020, 163: 111136. |
[12] | 刘立芹, 关军锋, 李明媛. β-半乳糖苷酶在果实成熟衰老中的生理作用[J]. 保鲜与加工, 2009, 9(3): 6-8. |
LIU L Q, GUAN J F, LI M Y. Physiological role of β-gal in fruit ripening and senescence[J]. Storage & Process, 2009, 9(3): 6-8. (in Chinese with English abstract) | |
[13] | SMITH D L, STARRETT D A, GROSS K C. A gene coding for tomato fruit beta-galactosidase Ⅱ is expressed during fruit ripening. Cloning, characterization, and expression pattern[J]. Plant Physiology, 1998, 117(2): 417-423. |
[14] | 魏建梅. 苹果(Malus domestica Borkh.)果实质地品质发育及采后调控的生理和分子基础[D]. 杨凌: 西北农林科技大学, 2009. |
WEI J M. Study on physiological and molecular mechanism of fruit texture development and post-harvest regulation of apple (Malus domestica Borkh.)[D]. Yangling: Northwest A & F University, 2009. (in Chinese with English abstract) | |
[15] |
WANG H, CHEN Y H, LIN H T, et al. 1-Methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in Anxi persimmon fruit during storage[J]. International Journal of Biological Macromolecules, 2020, 151: 723-729.
DOI PMID |
[16] |
LIN Y F, LIN Y X, LIN H T, et al. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage[J]. Food Chemistry, 2018, 264: 1-8.
DOI PMID |
[17] |
PANIAGUA C, SANTIAGO-DOMÉNECH N, KIRBY A R, et al. Structural changes in cell wall pectins during strawberry fruit development[J]. Plant Physiology and Biochemistry, 2017, 118: 55-63.
DOI PMID |
[18] | 魏建梅, 马锋旺. 苹果果实β-Gal和LOX活性变化特性及其与果实软化的关系[J]. 园艺学报, 2009, 36(5): 631-638. |
WEI J M, MA F W. The characteristics of β-gal and LOX activities in apple (Malus domestica Borkh.) fruit and their relation to fruit softening[J]. Acta Horticulturae Sinica, 2009, 36(5): 631-638. (in Chinese with English abstract) | |
[19] |
SMITH D L, GROSS K C. A family of at least seven beta-galactosidase genes is expressed during tomato fruit development[J]. Plant Physiology, 2000, 123(3): 1173-1183.
DOI PMID |
[20] | MWANIKI M W, MATHOOKO F M, MATSUZAKI M, et al. Expression characteristics of seven members of the β-galactosidase gene family in ‘La France’ pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening[J]. Postharvest Biology and Technology, 2005, 36(3): 253-263. |
[21] |
BALASUBRAMANIAM S, LEE H C, LAZAN H, et al. Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides[J]. Phytochemistry, 2005, 66(2): 153-163.
PMID |
[22] | YASHODA H M, PRABHA T N, THARANATHAN R N. Mango ripening-Role of carbohydrases in tissue softening[J]. Food Chemistry, 2007, 102(3): 691-698. |
[23] | ZHENG X L, JING G X, LIU Y, et al. Expression of expansin gene, MiExpA1, and activity of galactosidase and polygalacturonase in mango fruit as affected by oxalic acid during storage at room temperature[J]. Food Chemistry, 2012, 132(2): 849-854. |
[24] |
ROSS G S, WEGRZYN T, MACRAE E A, et al. Apple beta-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone[J]. Plant Physiology, 1994, 106(2): 521-528.
PMID |
[25] |
TRAINOTTI L, SPINELLO R, PIOVAN A, et al. Beta-Galactosidases with a lectin-like domain are expressed in strawberry[J]. Journal of Experimental Botany, 2001, 52(361): 1635-1645.
PMID |
[26] | WU Z C, BURNS J K. A beta-galactosidase gene is expressed during mature fruit abscission of ‘Valencia’ orange (Citrus sinensis)[J]. Journal of Experimental Botany, 2004, 55(402): 1483-1490. |
[27] | LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al. The carbohydrate-active enzymes database (CAZy) in 2013[J]. Nucleic Acids Research, 2014, 42(D1): D490-D495. |
[28] | FLICKINGER B M C, DREW S W. Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation[M]. New York: John Wiley & Sons Inc, 1999. |
[29] | SIMOS G, GIANNAKOUŔOS T, GEORGATSOS J G. Plant β-galactosidases: Purification by affinity chromatography and properties[J]. Phytochemistry, 1989, 28(10): 2587-2592. |
[30] | 董艺凝, 陈海琴, 张灏, 等. β-半乳糖苷酶的研究现状与进展[J]. 食品与生物技术学报, 2018, 37(4): 337-343. |
DONG Y N, CHEN H Q, ZHANG H, et al. Research status and progress on β-galactosidase[J]. Journal of Food Science and Biotechnology, 2018, 37(4): 337-343. (in Chinese with English abstract) | |
[31] | ZHANG S, MCCARTER J D, OKAMURA-OHO Y, et al. Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by permanently transfected Chinese hamster ovary cells[J]. Biochemical Journal, 1994, 304 (Pt 1): 281-288. |
[32] | ROJAS A L, NAGEM R A P, NEUSTROEV K N, et al. Crystal structures of beta-galactosidase from Penicillium sp. and its complex with galactose[J]. Journal of Molecular Biology, 2004, 343(5): 1281-1292. |
[33] | IAN DE VEAU E J, GROSS K C, HUBER D J, et al. Degradation and solubilization of pectin by beta-galactosidases purified from avocado mesocarp[J]. Physiologia Plantarum, 1993, 87(3): 279-285. |
[34] | CAREY A T, HOLT K, PICARD S, et al. Tomato exo-(1:>4)-beta-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone[J]. Plant Physiology, 1995, 108(3): 1099-1107. |
[35] | SEAN CARRINGTON C M, PRESSEY R. ß-galactosidase Ⅱ activity in relation to changes in cell wall galactosyl composition during tomato ripening[J]. Journal of the American Society for Horticultural Science, 1996, 121(1): 132-136. |
[36] | CHANDRASEKAR B, VAN DER HOORN R A L. Beta galactosidases in Arabidopsis and tomato-a mini review[J]. Biochemical Society Transactions, 2016, 44(1): 150-158. |
[37] | BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Molecular Biology, 2001, 47(1/2): 311-340. |
[38] | NG J K T, SCHRÖDER R, BRUMMELL D A, et al. Lower cell wall pectin solubilisation and galactose loss during early fruit development in apple (Malus×domestica) cultivar ‘Scifresh’ are associated with slower softening rate[J]. Journal of Plant Physiology, 2015, 176: 129-137. |
[39] | DWEVEDI A, KAYASTHA A M. Plant β-galactosidases: physiological significance and recent advances in technological applications[J]. Journal of Plant Biochemistry and Biotechnology, 2010, 19(1): 9-20. |
[40] | KOTAKE T, DINA S, KONISHI T, et al. Molecular cloning of a β-galactosidase from radish that specifically hydrolyzes β-(1-3)-and β-(1-6)-galactosyl residues of Arabinogalactan protein[J]. Plant Physiology, 2005, 138(3): 1563-1576. |
[41] | 高华奇, 王立芹, 孙翠, 等. 采后跃变型果实软化与果胶降解的研究进展[J]. 果树学报, 2022, 39(10): 1922-1934. |
GAO H Q, WANG L Q, SUN C, et al. Research progress on postharvest fruit softening and pectin degradation in climacteric fruits[J]. Journal of Fruit Science, 2022, 39(10): 1922-1934. (in Chinese with English abstract) | |
[42] | ROSS G S, REDGWELL R J, MACRAE E A. Kiwifruit β-galactosidase: Isolation and activity against specific fruit cell-wall polysaccharides[J]. Planta, 1993, 189(4): 499-506. |
[43] | 班秋妍. 柿果实成熟软化中β-半乳糖苷酶基因功能分析[D]. 杨凌: 西北农林科技大学, 2018. |
BAN Q Y. Identification and functional characterization of β-galactosidase genes in persimmon fruits ripening[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract) | |
[44] | KITAGAWA Y, KANAYAMA Y, YAMAKI S. Isolation of beta-galactosidase fractions from Japanese pear: Activity against native cell wall polysaccharides[J]. Physiologia Plantarum, 1995, 93(3): 545-550. |
[45] | GUO S L, SONG J, ZHANG B B, et al. Genome-wide identification and expression analysis of beta-galactosidase family members during fruit softening of peach[Prunus persica(L.) Batsch][J]. Postharvest Biology and Technology, 2018, 136: 111-123. |
[46] | 沈颖, 李芳东, 王玉霞, 等. 甜樱桃果实发育过程中细胞壁组分及其降解酶活性的变化[J]. 果树学报, 2020, 37(5): 677-686. |
SHEN Y, LI F D, WANG Y X, et al. A study on the variation of cell wall components and activities of their degradation enzymes in sweet cherry during fruit development[J]. Journal of Fruit Science, 2020, 37(5): 677-686. (in Chinese with English abstract) | |
[47] | MARTÍN I, HERNÁNDEZ-NISTAL J, ALBORNOS L, et al. βⅢ-Gal is involved in galactan reduction during phloem element differentiation in chickpea stems[J]. Plant & Cell Physiology, 2013, 54(6): 960-970. |
[48] | MARTÍN I, JIMÉNEZ T, ESTEBAN R, et al. Immunolocalization of a cell wall ß-galactosidase reveals its developmentally regulated expression in Cicer arietinum and its relationship to vascular tissue[J]. Journal of Plant Growth Regulation, 2008, 27(2): 181-191. |
[49] | CHANTARANGSEE M, TANTHANUCH W, FUJIMURA T, et al. Molecular characterization of β-galactosidases from germinating rice (Oryza sativa)[J]. Plant Science, 2007, 173(2): 118-134. |
[50] | FIGUEIREDO S A, LASHERMES P, ARAGÃO F J L. Molecular characterization and functional analysis of the β-galactosidase gene during Coffea arabica(L.) fruit development[J]. Journal of Experimental Botany, 2011, 62(8): 2691-2703. |
[51] | AHN Y O, ZHENG M Y, BEVAN D R, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35[J]. Phytochemistry, 2007, 68(11): 1510-1520. |
[52] | 王鹏, 李慧, 简熠, 等. 茄科植物木糖转移酶家族基因挖掘与进化分析[J]. 基因组学与应用生物学, 2018, 37(1): 332-338. |
WANG P, LI H, JIAN Y, et al. Gene mining and evolutionary analysis of xylosyltransferase gene family in Solanaceae[J]. Genomics and Applied Biology, 2018, 37(1): 332-338. (in Chinese with English abstract) | |
[53] | TANTHANUCH W, CHANTARANGSEE M, MANEESAN J, et al. Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.)[J]. BMC Plant Biology, 2008, 8: 84. |
[54] | LIU J L, GAO M H, LV M L, et al. Structure, evolution, and expression of the β-galactosidase gene family in Brassica campestris ssp. Chinensis[J]. Plant Molecular Biology Reporter, 2013, 31(6): 1249-1260. |
[55] | PAN H B, SUN Y H, QIAO M M, et al. Beta-galactosidase gene family genome-wide identification and expression analysis of members related to fruit softening in melon (Cucumis melo L.)[J]. BMC Genomics, 2022, 23(1): 795. |
[56] | TATEISHI A, NAGASHIMA K, MATHOOKO F M, et al. Differential expression of members of the β-galactosidase gene family during Japanese pear (Pyrus pyrifolia L.) fruit growth and on-tree ripening[J]. Journal of the American Society for Horticultural Science, 2005, 130(6): 819-829. |
[57] | DEAN G H, ZHENG H Q, TEWARI J, et al. The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage with correct hydration properties[J]. The Plant Cell, 2007, 19(12): 4007-4021. |
[58] | GANTULGA D, TURAN Y, BEVAN D R, et al. The Arabidopsis At1g45130 and At3g52840 genes encode beta-galactosidases with activity toward cell wall polysaccharides[J]. Phytochemistry, 2008, 69(8): 1661-1670. |
[59] | GANTULGA D, AHN Y O, ZHOU C H, et al. Comparative characterization of the Arabidopsis subfamily a1 beta-galactosidases[J]. Phytochemistry, 2009, 70(17/18): 1999-2009. |
[60] | WEI H, BRUNECKY R, DONOHOE B S, et al. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops[J]. Frontiers in Plant Science, 2015, 6: 315. |
[61] |
YANG H J, LIU J L, DANG M L, et al. Analysis of β-galactosidase during fruit development and ripening in two different texture types of apple cultivars[J]. Frontiers in Plant Science, 2018, 9: 539.
DOI PMID |
[62] | 赵丹, 朵虎, 吕前前, 等. 苹果β-半乳糖苷酶基因家族响应腐烂病菌信号[J]. 植物生理学报, 2021, 57(6): 1319-1328. |
ZHAO D, DUO H, LÜ Q Q, et al. β-Galactosidase gene family responds to the signals of Valsa mali in apple[J]. Plant Physiology Journal, 2021, 57(6): 1319-1328. (in Chinese with English abstract) | |
[63] | PAN Y W, CHENG J H, SUN D W. Inhibition of fruit softening by cold plasma treatments: affecting factors and applications[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(12): 1935-1946. |
[64] | MONEO-SÁNCHEZ M, IZQUIERDO L, MARTÍN I, et al. Subcellular location of Arabidopsis thaliana subfamily a1 β-galactosidases and developmental regulation of transcript levels of their coding genes[J]. Plant Physiology and Biochemistry, 2016, 109: 137-145. |
[65] | 魏佳, 陈磊, 刘培刚, 等. 桑树BGAL基因的全基因组鉴定及其在性别分化中的表达分析[J]. 分子植物育种, 2023, 21(15): 4962-4972. |
WEI J, CHEN L, LIU P G, et al. Genome-wide analysis of mulberry(Morus alba) BGAL genes and their expression in sexual differentiation[J]. Molecular Plant Breeding, 2023, 21(15): 4962-4972. (in Chinese with English abstract) | |
[66] | YANG J F, LI Q, DU W X, et al. Genome-wide analysis of glycoside hydrolase family 35 genes and their potential roles in cell wall development in Medicago truncatula[J]. Plants, 2021, 10(8): 1639. |
[67] |
LAZAN H, NG S Y, GOH L Y, et al. Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening[J]. Plant Physiology and Biochemistry, 2004, 42(11): 847-853.
PMID |
[68] |
HENRISSAT B. Glycosidase families[J]. Biochemical Society Transactions, 1998, 26(2): 153-156.
PMID |
[69] | 李军玲, 闫双勇, 张融雪, 等. 植物β-半乳糖苷酶研究进展[J]. 安徽农业科学, 2020, 48(1): 15-18. |
LI J L, YAN S Y, ZHANG R X, et al. Research progress on plant β-galactosidase[J]. Journal of Anhui Agricultural Sciences, 2020, 48(1): 15-18. (in Chinese) | |
[70] |
KISHORE D, KAYASTHA A M. A β-galactosidase from chick pea (Cicer arietinum) seeds: its purification, biochemical properties and industrial applications[J]. Food Chemistry, 2012, 134(2): 1113-1122.
DOI PMID |
[71] | PANIAGUA C, BLANCO-PORTALES R, BARCELÓ-MUÑOZ M, et al. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening[J]. Journal of Experimental Botany, 2016, 67(3): 619-631. |
[72] | SAMPEDRO J, GIANZO C, IGLESIAS N, et al. AtBGAL10 is the main xyloglucan β-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects[J]. Plant Physiology, 2012, 158(3): 1146-1157. |
[73] | 杜丽娜, 汤泽慧, 吴小容, 等. 茎瘤芥β-半乳糖苷酶家族基因鉴定及表达分析[J]. 分子植物育种, 2023, 21(2): 472-486. |
DU L N, TANG Z H, WU X R, et al. Genome-wide identification and expression analysis of β-galactosidase family members in Brassica juncea var. tumida[J]. Molecular Plant Breeding, 2023, 21(2): 472-486. (in Chinese with English abstract) | |
[74] |
HOBSON N, DEYHOLOS M K. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes[J]. BMC Genomics, 2013, 14: 344.
DOI PMID |
[75] | 曹晓聪, 张朝军, 苟浩琦, 等. 棉花β-半乳糖苷酶基因家族的全基因组鉴定及分析[J]. 分子植物育种, 2021, 19(24): 8032-8047. |
CAO X C, ZHANG C J, GOU H Q, et al. Genome-wide identification and analysis of cotton β-galactosidase gene family[J]. Molecular Plant Breeding, 2021, 19(24): 8032-8047. (in Chinese with English abstract) | |
[76] | HOU F Y, DU T F, QIN Z, et al. Genome-wide in silico identification and expression analysis of beta-galactosidase family members in sweetpotato[Ipomoea batatas(L.) Lam][J]. BMC Genomics, 2021, 22(1): 140. |
[77] | 阚娟, 金昌海, 汪志君, 等. β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响[J]. 扬州大学学报, 2006, 27(3): 76-80. |
KAN J, JIN C H, WANG Z J, et al. The effect of β-galactosidase and polygalacturonase on peach ripening and softening[J]. Journal of Yandzhou University, 2006, 27(3): 76-80. (in Chinese with English abstract) | |
[78] |
KANG I K, SUH S G, GROSS K C, et al. N-terminal amino acid sequence of persimmon fruit beta-galactosidase[J]. Plant Physiology, 1994, 105(3): 975-979.
PMID |
[79] | GERARDI C, BLANDO F, SANTINO A. Purification and chemical characterisation of a cell wall-associated β-galactosidase from mature sweet cherry (Prunus avium L.) fruit[J]. Plant Physiology and Biochemistry, 2012, 61: 123-130. |
[80] |
LEE D H, KANG S G, SUH S G, et al. Purification and characterization of a beta-galactosidase from peach (Prunus persica)[J]. Molecules and Cells, 2003, 15(1): 68-74.
PMID |
[81] | KETSA S, DAENGKANIT T. Firmness and activities of polygalacturonase, pectinesterase, β-galactosidase and cellulase in ripening durian harvested at different stages of maturity[J]. Scientia Horticulturae, 1999, 80(3/4): 181-188. |
[82] | 吕燕荣, 任小林, 周会玲. 枣果实β-半乳糖苷酶基因的克隆及表达分析[J]. 西北植物学报, 2011, 31(7): 1318-1325. |
LÜ Y R, REN X L, ZHOU H L. Cloning and expressing analysis of β-galactosidase gene in jujube fruit[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1318-1325. (in Chinese with English abstract) | |
[83] | 徐晓波. 李果实成熟过程中细胞壁多糖的降解和相关酶的研究[D]. 扬州: 扬州大学, 2008. |
XU X B. Reaserch on the degradation of cell wall polysaccharides and relevant enzymes during plum fruit softening[D]. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract) | |
[84] | 张敏, 王爱玲, 杨军, 等. 甜瓜‘黄醉仙’果实采后软化过程中细胞壁水解酶的变化[J]. 西北农林科技大学学报(自然科学版), 2015, 43(4): 113-117. |
ZHANG M, WANG A L, YANG J, et al. Changes of cell wall degrading enzymes during post-harvest softening of melon ‘Huangzuixian’[J]. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(4): 113-117. (in Chinese with English abstract) | |
[85] | 董黎梨, 汪永保, 李映志, 等. 菠萝蜜果实糖苷酶和多聚半乳糖醛酸酶的活性变化[J]. 南方农业学报, 2013, 44(6): 924-929. |
DONG L L, WANG Y B, LI Y Z, et al. Activity of glycosidase and polygalacturonase in jackfruit fruit[J]. Journal of Southern Agriculture, 2013, 44(6): 924-929. (in Chinese with English abstract) | |
[86] | GWANPUA S G, VERLINDEN B E, HERTOG M L A T M, et al. Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella[J]. Food Chemistry, 2016, 211: 883-891. |
[87] |
冯新, 赖瑞联, 高敏霞, 等. Adβgal-1和Adβgal-2克隆及其在猕猴桃果实软化中的作用[J]. 中国农业科学, 2019, 52(2): 312-326.
DOI |
FENG X, LAI R L, GAO M X, et al. Cloning of Adβgal-1 and Adβgal-2 genes and their roles during fruit softening of kiwifruit[J]. Scientia Agricultura Sinica, 2019, 52(2): 312-326. (in Chinese with English abstract)
DOI |
|
[88] | HERNANDEZ-GARCIA C M, FINER J J. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 2014, 217: 109-119. |
[89] | 蒋小兵, 杨惠娟, 王豪杰, 等. 苹果果实β-半乳糖苷酶基因启动子的克隆与功能分析[J]. 西北植物学报, 2017, 37(1): 59-66. |
JIANG X B, YANG H J, WANG H J, et al. Cloning and analysis of Md-gal gene promoter from apple(Malus×domestica)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 59-66. (in Chinese with English abstract) | |
[90] |
FINK J S, VERHAVE M, KASPER S, et al. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(18): 6662-6666.
PMID |
[1] | 程陈, 董朝阳, 郑生宏, 周宇博, 钟宁, 李文明, 朱阳春, 丁枫华, 冯利平, 黎贞发. 光温因子驱动的园艺作物叶龄模型模拟精度比较[J]. 浙江农业学报, 2024, 36(6): 1368-1378. |
[2] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
[3] | 王华, 汪王微, 王冬良, 张石虎, 胡新芳, 卢诗雨, 龚雪梅. 杜鹃花叶片转录组测序数据组装及功能注释[J]. 浙江农业学报, 2018, 30(7): 1149-1159. |
[4] | 赵小燕1,2,叶胜海2,李小华2,余鹏1,2,陈蕾2,翟荣荣2,金庆生2,张小明2,*. 利用基因功能性标记检测水稻稻瘟病和褐飞虱的抗性基因[J]. 浙江农业学报, 2015, 27(3): 327-. |
[5] | 戚行江;梁森苗;周利秋;柴雪芹. 微容气调环境对杨梅的保鲜效果研究[J]. , 2003, 15(4): 0-240. |
[6] | 牛宝龙;翁宏飚;孟智启;吕顺霖. RNA干涉与基因功能研究进展[J]. , 2003, 15(4): 0-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||