浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2823-2831.DOI: 10.3969/j.issn.1004-1524.20240058

• 生物系统工程 • 上一篇    下一篇

基于TCN-Attention-GRU模型的枣树需水量预测

李侨1,2(), 张华东1,2, 孙三民1,2,*(), 殷彩云3   

  1. 1.塔里木大学 水利与建筑工程学院,新疆 阿拉尔 843300
    2.塔里木大学 现代农业工程重点试验室,新疆 阿拉尔 843300
    3.新疆生产建设兵团 第一师农业技术推广站,新疆 阿拉尔 843300
  • 收稿日期:2024-01-10 出版日期:2024-12-25 发布日期:2024-12-27
  • 作者简介:李侨(2000—),女,四川眉山人,硕士,研究方向为节水灌溉。E-mail:2774110317@qq.com
  • 通讯作者: *孙三民,E-mail:ssmaqx@126.com
  • 基金资助:
    新疆生产建设兵团科技项目(2021CB021);第一师阿拉尔市科技计划项目(2022XX01);新疆棉花产业技术体系(XJARS-03)

Water demand prediction of jujube tree based on TCN-Attention-GRU model

LI Qiao1,2(), ZHANG Huadong1,2, SUN Sanmin1,2,*(), YIN Caiyun3   

  1. 1. College of Water Resources and Architecture Engineering, Tarim University, Alar 843300, Xinjiang, China
    2. Key Laboratory of Modern Agriculture Engineering, Tarim University, Alar 843300, Xinjiang, China
    3. Agricultural Technology Extension Station of the First Divition of the Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
  • Received:2024-01-10 Online:2024-12-25 Published:2024-12-27

摘要:

为提高新疆南疆农业用水效率,针对南疆农业灌溉制度特点,构建了基于TCN-Attention-GRU的枣树需水量预测模型。模型以枣树为研究对象,将气象数据作为模型的输入参数,输出量为枣树需水量。首先采用注意力机制(Attention)将数据进行重要性特征提取,再将处理后的数据送入时间卷积网络(TCN)抓取时序特征融合成一个新的特征向量,最后利用门控单元(GRU)进行预测,根据组合模型的特点与多步预测的验证,所提出的TCN-Attention-GRU组合模型预测良好。经测试,基于TCN-Attention-GRU的枣树需水量预测模型决定系数(R2)达到94.4%,平均绝对百分比误差(MAPE)、均方误差(MSE)分别为7.9%、28.8%,实际值与预测值相对平均误差为12.23%,与其他模型相比该模型具有更高的预测精度,能有效提高水资源利用率。所提出的预测模型可为农业节水稳产提供一定参考。

关键词: 时间卷积网络, 组合模型, 作物需水量预测, 枣树

Abstract:

In order to improve the efficiency of agricultural water use in southern Xinjiang, a TCN-Attention-GRU-based water demand prediction model for jujube trees was constructed to characterize the agricultural irrigation system in southern Xinjiang. The model took jujube trees as the research object, took meteorological data as the input parameters of the model, and the output quantity was the water demand of jujube trees. Firstly, the attention mechanism (Attention) was used to extract the importance features from the data, and then the processed data were sent into the temporal convolutional network (TCN) to grab the temporal features to fuse them into a new feature vector, the final prediction was made using a gating unit (GRU), according to the characteristics of the combined model with the validation of the multi-step prediction, the proposed TCN-Attention-GRU combination model predicted well. The tested TCN-Attention-GRU based jujube trees water demand prediction model determination coefficient (R2) reached 94.4%, mean absolute percentage error (MAPE) and mean square error (MSE) were 7.9% and 28.8%, respectively, and the relative average error between the actual value and the predicted value was 12.23%, which had higher prediction accuracy compared with other models, and it could effectively improve the rate of water resources, and the proposed prediction model provided some references to the agricultural water conservation and stabilization. The proposed prediction model provides a certain reference for agricultural water conservation and stable production.

Key words: time convolutional network, combination model, crop water demand prediction, jujube

中图分类号: