[1] |
邓铭江. 南疆未来发展的思考:塔里木河流域水问题与水战略研究[J]. 干旱区地理, 2016, 39(1):1-11.
|
|
DENG M J. Prospecting development of South Xinjiang:water strategy and problem of Tarim River Basin[J]. Arid Land Geography, 2016, 39(1):1-11. (in Chinese)
|
[2] |
尹立河, 张俊, 姜军, 等. 南疆地区水资源问题与对策建议[J]. 中国地质, 2023, 50(1):1-12.
|
|
YIN L H, ZHANG J, JIANG J, et al. Issues and countermeasures on water resources in the Southern Xinjiang[J]. Geology in China, 2023, 50(1):1-12. (in Chinese with English abstract)
|
[3] |
连晓晗. 基于PSO-GRU青椒生长期需水预测算法的智慧灌溉系统研究[D]. 邯郸: 河北工程大学, 2022.
|
|
LIAN X H. Research on intelligent irrigation system based on PSO-GRU water demand prediction algorithm for green pepper growth period[D]. Handan: Hebei University of Engineering, 2022. (in Chinese with English abstract)
|
[4] |
李少伟. 基于人工神经网络的智能节水灌溉系统的研究[D]. 合肥: 安徽大学, 2021.
|
|
LI S W. Research on intelligent water-saving irrigation system based on artificial neural network[D]. Hefei: Anhui University, 2021. (in Chinese with English abstract)
|
[5] |
李真真. 基于作物需水量预测的农田智能灌溉系统的研究[D]. 郑州: 华北水利水电大学, 2021.
|
|
LI Z Z. Research on intelligent farmland irrigation system based on crop water demand prediction[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021. (in Chinese with English abstract)
|
[6] |
李学军, 程红. 基于LSTM算法的智能节水灌溉预测模型研究[J]. 农机化研究, 2022, 44(3):22-27, 32.
|
|
LI X J, CHENG H. Based on the Internet of Things precision farmland irrigation system key technology research[J]. Journal of Agricultural Mechanization Research, 2022, 44(3):22-27, 32. (in Chinese with English abstract)
|
[7] |
孙博瑞, 孙三民, 蒋敏, 等. 基于LSTM神经网络的智能灌溉系统设计与试验[J]. 中国农机化学报, 2022, 43(4):116-123.
|
|
SUN B R, SUN S M, JIANG M, et al. Design and test of intelligent irrigation system based on LSTM neural network[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4):116-123. (in Chinese with English abstract)
|
[8] |
李莉, 李伟, 耿磊, 等. 基于RF-GRU的温室番茄结果前期蒸腾量预测方法[J]. 农业机械学报, 2022, 53(3):368-376.
|
|
LI L, LI W, GENG L, et al. Prediction method of greenhouse tomato transpiration in early fruiting stage based on RF-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3):368-376. (in Chinese with English abstract)
|
[9] |
李志磊, 周建平, 魏正英, 等. ET0预测的卡尔曼滤波修正ANFIS模型研究[J]. 干旱地区农业研究, 2017, 35(3):114-119.
|
|
LI Z L, ZHOU J P, WEI Z Y, et al. A study on the modified ANFIS model by the Calman filter for ET0 prediction[J]. Agricultural Research in the Arid Areas, 2017, 35(3):114-119. (in Chinese with English abstract)
|
[10] |
刘玉甫, 曹伟. 基于支持向量机优化粒子群算法的作物生育期ET0预测[J]. 现代农业科技, 2014(2):219-220, 228.
|
|
LIU Y F, CAO W. Prediction of ET0 based on particle swarm optimization and support vector regression[J]. Modern Agricultural Science and Technology, 2014(2):219-220, 228. (in Chinese with English abstract)
|
[11] |
张丽, 吴金亮, 杨国范. 基于BP神经网络的东港灌区作物需水量预测研究[J]. 水土保持研究, 2012, 19(6):207-210, 216.
|
|
ZHANG L, WU J L, YANG G F. Prediction research for crop water requirement based on BP neural network in Donggang irrigation district[J]. Research of Soil and Water Conservation, 2012, 19(6):207-210, 216. (in Chinese with English abstract)
|
[12] |
吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8):1015-1022.
|
|
WU J B, ZENG G H, ZHANG Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable Energy Resources, 2023, 41(8):1015-1022. (in Chinese with English abstract)
|
[13] |
SIDHU R K, KUMAR R, RANA P S. Machine learning based crop water demand forecasting using minimum climatological data[J]. Multimedia Tools and Applications, 2020, 79(19):13109-13124.
|
[14] |
TONG Z Y, ZHANG S R, YU J X, et al. A hybrid prediction model for CatBoost tomato transpiration rate based on feature extraction[J]. Agronomy, 2023, 13(9):2371.
|
[15] |
MA Y Z, LV B, WANG Y F, et al. Crop water requirement prediction method based on EEMD-attention-LSTM model[J]. Journal of Physics:Conference Series, 2023, 2637(1):012028.
|
[16] |
李发崇, 李鹏, 高莲, 等. 基于多尺度模型融合和VMD-TCN-RF混合网络的短期电力负荷预测方法[J]. 电子器件, 2023, 46(4):1035-1042.
|
|
LI F C, LI P, GAO L, et al. Short-term power load forecasting method based on multiscale model fusion and VMD-TCN-RF hybrid network[J]. Chinese Journal of Electron Devices, 2023, 46(4):1035-1042. (in Chinese with English abstract)
|
[17] |
吴珺玥, 赵二刚, 郭增良, 等. 基于Spearman系数和TCN的光伏出力超短期多步预测[J]. 太阳能学报, 2023, 44(9):180-186.
|
|
WU J Y, ZHAO E G, GUO Z L, et al. Ultra-short-term photovoltaic power multi-step prediction based on spearman coefficient and tcn[J]. Acta Energiae Solaris Sinica, 2023, 44(9):180-186. (in Chinese)
|
[18] |
张泉. 作物需水量及灌溉需水量趋势性分析及方法[J]. 河南水利与南水北调, 2021, 50(6):81-83.
|
|
ZHANG Q. Analysis and method of trend of crop water demand and irrigation water demand[J]. Henan Water Resources and South-to-North Water Diversion, 2021, 50(6):81-83. (in Chinese with English abstract)
|
[19] |
苏向敬, 邓超, 栗风永, 等. 基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测[J]. 电力系统自动化, 2024, 48(2):118-127.
|
|
SU X J, DENG C, LI F Y, et al. Interpretable detection of false data injection attacks in power grid based on multi-head graph attention network and time convolution network model[J]. Automation of Electric Power Systems, 2024, 48(2):118-127. (in Chinese)
|
[20] |
刘晓晓, 孔云峰. 气象监测数据的时空特征分析与建模[J]. 地理空间信息, 2009, 7(4):104-107.
|
|
LIU X X, KONG Y F. Spatiotemporal analysis and modeling of the meteorological data[J]. Geospatial Information, 2009, 7(4):104-107. (in Chinese with English abstract)
|
[21] |
陈天涯, 陈盛, 郑阳, 等. 基于VMD-CIMFs-TCN的水电机组振动预测[J]. 水电能源科学, 2023, 41(9):159-163.
|
|
CHEN T Y, CHEN S, ZHENG Y, et al. Prediction of vibration trend of hydroelectric unit based on VMD-CIMFs-TCN[J]. Water Resources and Power, 2023, 41(9):159-163. (in Chinese with English abstract)
|
[22] |
张上要, 罗军刚, 石国栋, 等. 基于VMD-TCN模型的渭河流域月径流量预测研究[J]. 人民黄河, 2023, 45(10):25-29.
|
|
ZHANG S Y, LUO J G, SHI G D, et al. Monthly runoff prediction in Weihe River Basin based on VMD-TCN model[J]. Yellow River, 2023, 45(10):25-29. (in Chinese with English abstract)
|
[23] |
安元超, 张岳君, 林文文, 等. 基于BO-GRU神经网络的锂离子电池剩余使用寿命预测[J]. 机械制造, 2023, 61(12):50-55.
|
|
AN Y C, ZHANG Y J, LIN W W, et al. Prediction of remaining service life of lithium-ion battery based on BO-GRU neural network[J]. Machinery, 2023, 61(12):50-55. (in Chinese with English abstract)
|
[24] |
王则玉, 谢香文, 刘国宏, 等. 干旱区绿洲滴灌成龄枣树耗水规律及作物系数[J]. 新疆农业科学, 2015, 52 (4):675-680.
|
|
WANG Z Y, XIE X W, LIU G H, et al. Jujube drip irrigation water consumption and its crop coefficient in oasis of arid areas[J]. Xinjiang Agricultural Sciences, 2015, 52 (4):675-680. (in Chinese with English abstract)
|