浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 858-868.DOI: 10.3969/j.issn.1004-1524.20240424
黄鹏武1(), 吴倩倩1, 赵丽芳1, 邵德忠1, 吴鲁洁1, 赵觅漾2, 田雨3, 卢升高3,*(
)
收稿日期:
2024-05-10
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
*卢升高,E-mail: lusg@zju.edu.cn通讯作者:
卢升高
基金资助:
HUANG Pengwu1(), WU Qianqian1, ZHAO Lifang1, SHAO Dezhong1, WU Lujie1, ZHAO Miyang2, TIAN Yu3, LU Shenggao3,*(
)
Received:
2024-05-10
Online:
2025-04-25
Published:
2025-05-09
Contact:
LU Shenggao
摘要: 施入无机碱性材料是改良酸化土壤的常用手段,然而各材料的长期改良效果尚不明确。为此,特设置不施改良剂的对照和施用1 875 kg·hm-2石灰或硅钙钾镁肥或牡蛎壳的处理,开展无机调理剂配施有机肥改良酸化土壤的3 a田间试验。结果表明:施入调理剂3 a后,相较于对照,施用硅钙钾镁肥和牡蛎壳的处理显著(P<0.05)提升了土壤pH值,分别较对照增高0.41和0.20。施入调理剂的3个处理均较对照显著降低了土壤中的交换性酸总量。然而,施用石灰处理的土壤在第3年出现了复酸化现象,而施用硅钙钾镁肥的处理未出现复酸化现象,在改良土壤酸度方面表现出长效性。与对照相比,施用硅钙钾镁肥的处理显著增加了土壤交换性钙离子含量,施用石灰的处理显著增加土壤交换性镁离子含量,施用牡蛎壳的处理显著增加土壤交换性钾离子含量。施用调理剂的处理中,仅施用牡蛎壳的处理较对照显著降低土壤容重,提升土壤孔隙率。施用硅钙钾镁肥的处理较对照显著提升了土壤细菌的香农指数,而施用石灰或牡蛎壳的处理显著提高了土壤微生物生物量碳含量。此外,施用石灰或硅钙钾镁肥的处理还较对照显著提高了土壤蛋白酶的活性。供试的3种土壤调理剂相比,硅钙钾镁肥在阻控土壤酸化、提升土壤养分和微生物活性方面的表现最佳,牡蛎壳在改善土壤物理性质方面表现较佳。
中图分类号:
黄鹏武, 吴倩倩, 赵丽芳, 邵德忠, 吴鲁洁, 赵觅漾, 田雨, 卢升高. 无机调理剂配施有机肥治理酸化土壤的长效性研究[J]. 浙江农业学报, 2025, 37(4): 858-868.
HUANG Pengwu, WU Qianqian, ZHAO Lifang, SHAO Dezhong, WU Lujie, ZHAO Miyang, TIAN Yu, LU Shenggao. Long-term effects of inorganic conditioner combined with organic manure in ameliorating acidified soil[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 858-868.
调理剂 Conditioner | 各元素的质量分数Mass fraction of elements/% | ||||||
---|---|---|---|---|---|---|---|
O | Si | Al | Fe | Ca | Mg | K | |
石灰Lime | 40.50 | 1.34 | 0.28 | 0.14 | 52.4 | 0.81 | 0.04 |
硅钙钾镁Fertilizer of calcium silicon magnesium potassium | 35.40 | 13.10 | 4.31 | 2.67 | 21.1 | 1.71 | 2.84 |
牡蛎壳Oyster shell | 37.00 | 2.66 | 1.21 | 0.33 | 16.1 | 0.53 | 0.35 |
表1 不同调理剂的元素组成
Table 1 Elemental composition of conditioners
调理剂 Conditioner | 各元素的质量分数Mass fraction of elements/% | ||||||
---|---|---|---|---|---|---|---|
O | Si | Al | Fe | Ca | Mg | K | |
石灰Lime | 40.50 | 1.34 | 0.28 | 0.14 | 52.4 | 0.81 | 0.04 |
硅钙钾镁Fertilizer of calcium silicon magnesium potassium | 35.40 | 13.10 | 4.31 | 2.67 | 21.1 | 1.71 | 2.84 |
牡蛎壳Oyster shell | 37.00 | 2.66 | 1.21 | 0.33 | 16.1 | 0.53 | 0.35 |
图1 不同处理的土壤pH与交换性酸总量 柱上无相同小写、大写字母的分别表示在2021年、2023年处理间差异显著(P<0.05)。
Fig.1 Soil pH and total exchangeable acid content under treatments Bars marked without the same lowercase or uppercase letters indicate significant difference within treatments at P<0.05 in 2021 and 2023, respectively.
图2 不同处理的土壤交换性钾、钠、钙、镁离子含量 柱上无相同字母的表示处理间差异显著(P<0.05)。图2~4同。
Fig.2 Content of exchangeable K+, Na+, Ca2+, and Mg2+ under treatments Bars marked without the same letters indicate significant difference within treatments at P<0.05. The same as in Fig. 2 to Fig. 4.
图5 不同处理门水平上的土壤真菌群落组成(左)和β多样性(右) Ascomycota,子囊菌门;Unassigned,未分类;Mortierellomycota,被孢霉门;Basidiomycota,担子菌门;Chytridiomycota,壶菌门;Rozellomycota,罗兹菌门;Others,其他。PCoA,主坐标分析。
Fig.5 Composition of soil fungal community at phylum level (left) and its β-diversity (right) under treatments PCoA, Principal co-ordinates analysis.
图6 不同处理门水平上的土壤细菌群落组成(左)和β多样性(右) Proteobacteria,变形菌门;Chloroflexi,绿弯菌门;Acidobacteria,酸杆菌门;Nitrospirae,硝化螺旋菌门;Bacteroidetes,拟杆菌门;Planctomycetes,浮霉菌门;Verrucomicrobia,疣微菌门;Unassigned,未分类;Firmicutes,厚壁菌门;Actinobacteria,放线菌门;Crenarchaeota,泉古菌门;Patescibacteria,髌骨细菌门;Thaumarchacota,奇古菌门;Others,其他。PCoA,主坐标分析。
Fig.6 Composition of soil bacterial community at phylum level (left) and its β-diversity (right) under treatments PCoA, Principal co-ordinates analysis.
图7 不同处理的土壤细菌优势菌门 同一菌门下柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.7 Dominant bacterial phyla in soil under treatments Bars marked without the same letters indicate significant difference within treatments in the same phylum at P<0.05.
处理 Treatment | 细菌香农指数 Bacterial Shannon index | 真菌香农指数 Fungal Shannon index |
---|---|---|
CK | 2.14±0.10 bc | 0.91±0.10 a |
T1 | 2.20±0.10 ab | 0.72±0.20 a |
T2 | 2.26±0.10 a | 0.86±0.10 a |
T3 | 2.09±0.10 c | 0.74±0.20 a |
表2 不同处理的土壤微生物α多样性指数
Table 2 Soil microbial α-diversity index under treatmetns
处理 Treatment | 细菌香农指数 Bacterial Shannon index | 真菌香农指数 Fungal Shannon index |
---|---|---|
CK | 2.14±0.10 bc | 0.91±0.10 a |
T1 | 2.20±0.10 ab | 0.72±0.20 a |
T2 | 2.26±0.10 a | 0.86±0.10 a |
T3 | 2.09±0.10 c | 0.74±0.20 a |
处理 Treatment | MBC/(mg·kg-1) | MBN/(mg·kg-1) | Pro/(U·g-1) | NR/(U·g-1) | Pho/(U·g-1) | AP/(U·g-1) |
---|---|---|---|---|---|---|
CK | 196.6±32.0 c | 13.3±3.0 a | 153.1±10.0 b | 0.28±0.10 a | 2 404±109 a | 4 981±141 a |
T1 | 319.9±12.0 a | 16.5±1.0 a | 198.1±14.0 a | 0.41±0.20 a | 2 069±177 ab | 4 793±93 a |
T2 | 228.8±21.0 bc | 16.1±2.0 a | 192.5±10.0 a | 0.38±0.20 a | 2 570±319 a | 5 211±301 a |
T3 | 291.3±11.0 ab | 19.1±3.0 a | 165.9±8.0 ab | 0.10±0.10 a | 1 571±57 b | 4 771±162 a |
表3 不同处理的土壤微生物生物量碳、氮含量和土壤酶活性
Table 3 Content of microbial biomass carbon and microbial biomass nitrogen and soil enzymes activities under treatments
处理 Treatment | MBC/(mg·kg-1) | MBN/(mg·kg-1) | Pro/(U·g-1) | NR/(U·g-1) | Pho/(U·g-1) | AP/(U·g-1) |
---|---|---|---|---|---|---|
CK | 196.6±32.0 c | 13.3±3.0 a | 153.1±10.0 b | 0.28±0.10 a | 2 404±109 a | 4 981±141 a |
T1 | 319.9±12.0 a | 16.5±1.0 a | 198.1±14.0 a | 0.41±0.20 a | 2 069±177 ab | 4 793±93 a |
T2 | 228.8±21.0 bc | 16.1±2.0 a | 192.5±10.0 a | 0.38±0.20 a | 2 570±319 a | 5 211±301 a |
T3 | 291.3±11.0 ab | 19.1±3.0 a | 165.9±8.0 ab | 0.10±0.10 a | 1 571±57 b | 4 771±162 a |
[1] | 易杰祥, 吕亮雪, 刘国道. 土壤酸化和酸性土壤改良研究[J]. 华南热带农业大学学报, 2006(1): 23-28. |
YI J X, LÜ L X, LIU G D. Research on soil acidification and acidic soil’s melioration[J]. Journal of South China University of Tropical Agriculture, 2006(1): 23-28. (in Chinese with English abstract) | |
[2] | 孟红旗, 刘景, 徐明岗, 等. 长期施肥下我国典型农田耕层土壤的pH演变[J]. 土壤学报, 2013, 50(6): 1109-1116. |
MENG H Q, LIU J, XU M G, et al. Evolution of pH in topsoils of typical Chinese croplands under long-term fertilization[J]. Acta Pedologica Sinica, 2013, 50(6): 1109-1116. (in Chinese with English abstract) | |
[3] | 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137-3143. |
YU T Y, SUN X S, SHI C R, et al. Advances in soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11): 3137-3143. (in Chinese with English abstract) | |
[4] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238-244. (in Chinese with English abstract) | |
[5] | 左梅, 向必坤, 王瑞, 等. 石灰与油菜还田对土壤肥力与雪茄烟产量、质量的影响[J]. 中国土壤与肥料, 2023(6): 102-107. |
ZUO M, XIANG B K, WANG R, et al. Effects of lime and rape returning on soil fertility and cigar yield and quality[J]. Soil and Fertilizer Sciences in China, 2023(6): 102-107. (in Chinese with English abstract) | |
[6] | 刘禹池, 岳丽杰, 卢庭启, 等. 不同调酸措施对西南山地酸化土壤改良及玉米产量的影响[J]. 中国土壤与肥料, 2023(1): 191-198. |
LIU Y C, YUE L J, LU T Q, et al. Effects of different acid regulating measures on acidification soil improvement and maize yield in southwest mountainous areas[J]. Soil and Fertilizer Sciences in China, 2023(1): 191-198. (in Chinese with English abstract) | |
[7] | 王宁, 李九玉, 徐仁扣. 土壤酸化及酸性土壤的改良和管理[J]. 安徽农学通报, 2007, 13(23): 48-51. |
WANG N, LI J Y, XU R K. Acidification of soil and improvement and management of acid soil[J]. Anhui Agricultural Science Bulletin, 2007, 13(23): 48-51. (in Chinese) | |
[8] | 李九玉, 王宁, 徐仁扣. 工业副产品对红壤酸度改良的研究[J]. 土壤, 2009, 41(6): 932-939. |
LI J Y, WANG N, XU R K. Amelioration of industrial by-products on soil acidity in red soil[J]. Soils, 2009, 41(6): 932-939. (in Chinese with English abstract) | |
[9] | 周昊文, 王香琪, 齐永波, 等. 矿物质调理剂用量对酸性土壤养分状况和油菜生长的影响[J]. 中国土壤与肥料, 2021(3): 243-249. |
ZHOU H W, WANG X Q, QI Y B, et al. Effects of amounts of mineral conditioner on the nutrient status in acid soil and the yield of oilseed rape[J]. Soil and Fertilizer Sciences in China, 2021(3): 243-249. (in Chinese with English abstract) | |
[10] | 冀建华, 李絮花, 刘秀梅, 等. 硅钙钾镁肥对南方稻田土壤酸性和盐基离子动态变化的影响[J]. 应用生态学报, 2019, 30(2): 583-592. |
JI J H, LI X H, LIU X M, et al. Effects of fertilizer of calcium silicon magnesium potassium on the dynamics of soil acidity and exchangeable base cation in paddy field of southern China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 583-592. (in Chinese with English abstract) | |
[11] | 韩科峰, 陈余平, 胡铁军, 等. 硅钙钾镁肥对浙江省酸性水稻土壤的改良效果[J]. 浙江农业学报, 2018, 30(1): 117-122. |
HAN K F, CHEN Y P, HU T J, et al. Effects of silicon, calcium, potassium and magnesium fertilizer on acid paddy soil improvement in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2018, 30(1): 117-122. (in Chinese with English abstract) | |
[12] | 孙希武, 彭福田, 肖元松, 等. 硅钙钾镁肥配施黄腐酸钾对土壤酶活性及桃幼树生长的影响[J]. 核农学报, 2020, 34(4): 870-877. |
SUN X W, PENG F T, XIAO Y S, et al. Effects of silicon, calcium, potassium and magnesium fertilizer combined with fulvic acid potassium on soil enzyme activity and the growth of young peach trees[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 870-877. (in Chinese with English abstract) | |
[13] | 曹敏杰, 丁希月, 许玲玲, 等. 牡蛎壳资源利用研究进展[J]. 集美大学学报(自然科学版), 2021, 26(5): 390-397. |
CAO M J, DING X Y, XU L L, et al. Progress of the utilization of oyster shell resource[J]. Journal of Jimei University(Natural Science), 2021, 26(5): 390-397. (in Chinese with English abstract) | |
[14] | 柳开楼, 熊华荣, 胡惠文, 等. 特贝钙土壤调理剂对红壤旱地花生产量和阻控土壤酸化的影响[J]. 广东农业科学, 2017, 44(5): 93-98. |
LIU K L, XIONG H R, HU H W, et al. Effects of soil conditioner(named by Tebeigai) on peanut yield and controlling soil acidification in red soil[J]. Guangdong Agricultural Sciences, 2017, 44(5): 93-98. (in Chinese with English abstract) | |
[15] | 田中学, 徐丽萍, 王旭. 土壤调理剂对小油菜镉吸收的影响[J]. 中国土壤与肥料, 2018(1): 94-100. |
TIAN Z X, XU L P, WANG X. Effects of soil amendments on the adsorption of Cd by small rape[J]. Soil and Fertilizer Sciences in China, 2018(1): 94-100. (in Chinese with English abstract) | |
[16] | DING Z F, REN B L, CHEN Y H, et al. Chemical and biological response of four soil types to lime application: an incubation study[J]. Agronomy, 2023, 13(2): 504. |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
[19] | 徐欣, 郑利远, 周珂, 等. 长期施肥对不同有机质水平黑土蛋白酶活性及氮素的影响[J]. 中国土壤与肥料, 2019(1): 44-48. |
XU X, ZHENG L Y, ZHOU K, et al. Effects of long-term fertilization on protease activity and nitrogen in arable mollisols of different organic matter contents[J]. Soil and Fertilizer Sciences in China, 2019(1): 44-48. (in Chinese with English abstract) | |
[20] | 侯萌, 李思聪, 陈一民, 等. 水肥管理对设施黑土茄子土壤硝酸还原酶活性的影响[J]. 土壤与作物, 2021, 10(2): 187-193. |
HOU M, LI S C, CHEN Y M, et al. Effects of irrigation and fertilizers management on nitrate reductase activities in Mollisols under facility eggplant field[J]. Soils and Crops, 2021, 10(2): 187-193. (in Chinese with English abstract) | |
[21] | 王兵爽, 李淑君, 张舒桓, 等. 西瓜根系分泌酸性磷酸酶对有机肥营养的响应[J]. 土壤学报, 2019, 56(2): 454-465. |
WANG B S, LI S J, ZHANG S H, et al. Responses of acid phosphatase secreted by watermelon roots to organic manure nutrition[J]. Acta Pedologica Sinica, 2019, 56(2): 454-465. (in Chinese with English abstract) | |
[22] | TABATABAI M A, BREMNER J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil Biology and Biochemistry, 1969, 1(4): 301-307. |
[23] | HOULE D, DUCHESNE L, MOORE J D, et al. Soil and tree-ring chemistry response to liming in a sugar maple stand[J]. Journal of Environmental Quality, 2002, 31(6): 1993-2000. |
[24] | CAIRES E F, GARBUIO F J, CHURKA S, et al. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield[J]. European Journal of Agronomy, 2008, 28(1): 57-64. |
[25] | 孟赐福, 傅庆林, 水建国, 等. 浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响[J]. 植物营养与肥料学报, 1999, 5(2): 129-136. |
MENG C F, FU Q L, SHUI J G, et al. Effect of liming on acidity and exchangeable calcium and magensium of red soil in central Zhejiang[J]. Journal of Plant Nutrition and Fertilizers, 1999, 5(2): 129-136. (in Chinese) | |
[26] | NEALE S P, SHAH Z, ADAMS W A. Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming[J]. Soil Biology and Biochemistry, 1997, 29(9/10): 1463-1474. |
[27] | SHI L, GUO Z H, PENG C, et al. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: a four-season field experiment[J]. Ecotoxicology and Environmental Safety, 2019, 171: 425-434. |
[28] | BENDING G D, TURNER M K, RAYNS F, et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology and Biochemistry, 2004, 36(11): 1785-1792. |
[29] | CHEN H, REN H Y, LIU J J, et al. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses[J]. Environmental Science and Pollution Research International, 2022, 29(30): 45435-45448. |
[30] | 杨玲, 张艺, 钟俊杰, 等. 不同调酸剂对种植玉米红壤微生物群落的影响[J]. 农业环境科学学报, 2024, 43(3): 609-616. |
YANG L, ZHANG Y, ZHONG J J, et al. Effects of different acid modulators on the microbial communities in maize planting red soil[J]. Journal of Agro-Environment Science, 2024, 43(3): 609-616. (in Chinese with English abstract) | |
[31] | DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221-226. |
[32] | WATANABE K. Detection of protease genes in field soil applied with liquid livestock feces and speculation on their function and origin[J]. Soil Science and Plant Nutrition, 2009, 55(1): 42-52. |
[33] | 张广娜, 陈振华, 陈利军, 等. 东北地区三种典型土壤磷组分的31P核磁共振研究及其与土壤磷酸酶活性的关系[J]. 土壤通报, 2013, 44(3): 617-623. |
ZHANG G N, CHEN Z H, CHEN L J, et al. Soil phosphorus composition by 31P NMR spectroscopy and soil phosphatase activities of three typical soils in northeast China[J]. Chinese Journal of Soil Science, 2013, 44(3): 617-623. (in Chinese with English abstract) |
[1] | 伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424. |
[2] | 姚燕来, 朱为静, 丁检, 洪磊东, 洪春来, 王卫平, 朱凤香, 何伟科, 洪海清. 浙江省规模化蔬菜基地连作障碍与土壤环境调查分析[J]. 浙江农业学报, 2022, 34(7): 1474-1484. |
[3] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
[4] | 陈闺, 周杰文, 李海平, 张发明, 李春顺, 柳立, 张毅. 土壤调理剂施用对植烟酸化土壤pH值和烤烟根系特性的影响[J]. 浙江农业学报, 2021, 33(7): 1275-1282. |
[5] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[6] | 王一鸣, 龙胜举, 陈延, 贺忠群, 赵英鹏, 仰路希, 严文一. 土壤酸化对景天三七叶片光合特性及超微结构的影响[J]. 浙江农业学报, 2019, 31(6): 915-921. |
[7] | 韩科峰, 陈余平, 胡铁军, 张丰, 周飞, 陈剑秋, 吴良欢. 硅钙钾镁肥对浙江省酸性水稻土壤的改良效果[J]. 浙江农业学报, 2018, 30(1): 117-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||