浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1648-1657.DOI: 10.3969/j.issn.1004-1524.20240997
        
               		丛建民1(
), 黄威剑1, 尹欣幸1, 刘金平1, 赵永2,*(
)
                  
        
        
        
        
    
收稿日期:2024-11-19
									
				
									
				
									
				
											出版日期:2025-08-25
									
				
											发布日期:2025-09-03
									
			作者简介:丛建民(1974—),男,吉林大安人,博士,教授,研究方向为生物化学与分子生物学。E-mail:congjianmin@126.com
				
							通讯作者:
					*赵永,E-mail:13500835885@139.com
							基金资助:
        
               		CONG Jianmin1(
), HUANG Weijian1, YIN Xinxing1, LIU Jinping1, ZHAO Yong2,*(
)
			  
			
			
			
                
        
    
Received:2024-11-19
									
				
									
				
									
				
											Online:2025-08-25
									
				
											Published:2025-09-03
									
			Contact:
					ZHAO Yong   
							摘要: 为研究5-氮胞苷(5-azacytidine, 5-AzaC)在水曲柳体细胞胚胎发生中的表观遗传调控作用,通过在培养基中添加20.0 μmol·L-1 5-AzaC诱导水曲柳体细胞胚胎发生,以未添加5-AzaC为对照,采用甲基化敏感扩增多态性(methylation sensitive amplification polymorphism, MSAP)法分析外植体基因组DNA的胞嘧啶甲基化水平和模式,以及变异对体细胞胚胎发生的影响。结果表明:5-AzaC可以降低水曲柳外植体的褐化率,引起外植体基因组DNA甲基化状态发生变化,具体表现为全甲基化比例升高,半甲基化比例降低。5-AzaC抑制外植体基因组DNA的胞嘧啶甲基化,诱导基因组DNA去甲基化变异,从而降低体细胞胚胎的诱导率。研究结果表明,表观遗传参与调控树木体细胞胚胎发生,为树木体细胞胚胎发生提供了理论指导。
中图分类号:
丛建民, 黄威剑, 尹欣幸, 刘金平, 赵永. 5-氮胞苷对体细胞胚胎诱导水曲柳DNA甲基化的影响[J]. 浙江农业学报, 2025, 37(8): 1648-1657.
CONG Jianmin, HUANG Weijian, YIN Xinxing, LIU Jinping, ZHAO Yong. Effect of 5-azacytosine on somatic embryo-induced DNA methylation in Fraxinus mandschurica[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1648-1657.
																													图2 水曲柳外植体各种状态的比例 HT,外植体褐化长体细胞胚胎;HY,外植体褐化长愈伤;HD,外植体褐化长大;HW,外植体褐化未长大;WD,外植体未褐化长大;WW,未褐化未长大。下同。
Fig.2 The rate of various explants of Fraxinus mandshurica HT, Explants with browning-elongated embryo; HY, Explants with browning-elongated callus; HD, Explants with browning-elongated growth; HW, Explants with browning non-elongated growth; WD, Explants with non-browning elongated growth; WW, Explants with non-browning non-elongated growth. The same as below.
																													图3 水曲柳合子胚外植体基因组DNA甲基化电泳图 H,12个外植体DNA经HpaⅡ+EcoRⅠ酶切,再用E6H4引物选择性扩增的产物图;M,对应MspⅠ+EcoRⅠ酶切产物的选择性扩增产物图。Ⅰ为HpaⅡ、MspⅠ酶切均有位点;Ⅱ为HpaⅡ酶切有位点,其他酶酶切无位点;Ⅲ为MspⅠ酶切有位点,HpaⅡ酶切无位点;A指MspⅠ酶切后选择性扩增产物图在M1、M2、M3、M10、M12有位点,在其他泳道无位点。
Fig.3 Electrophoresis of genomic DNA methylation of zygotic embryo explants of Fraxinus mandshurica H, Selective amplification profile of 12 explant DNA samples using primer E6H4 after digestion with HpaⅡ+EcoRⅠ; M, Corresponding selective amplification profile of products digested with MspⅠ+EcoRⅠ; Category Ⅰ, Fragments cleaved by both HpaⅡ and MspⅠ; Category Ⅱ, Fragments cleaved by HpaⅡ (H-digested) but not cleaved by other restriction enzyme; Category Ⅲ, Fragments cleaved by MspⅠ (M-digested) but not cleaved by HpaⅡ; A, Fragments in the MspⅠ-digested selective amplification profil that are present in lanes M1, M2, M3, M10, M12 but absent in other lanes.
| 外植体类型 Explant type  |  总位点 Total sites  |  未甲基化位点数(占比) Non-methylation sites (ratio/%)  |  甲基化的CCGG位点数(占比/%) Methylation sites of CCGG(ratio/%) | ||
|---|---|---|---|---|---|
| 甲基化总位点 Methylation total sites  |  全甲基化位点 Holomethylation sites  |  半甲基化位点 Semimethylation site  | |||
| HT | 381 | 268(70.34) | 113(29.66) | 68(17.85) | 45(11.79) | 
| HY | 390 | 276(70.77) | 114(29.23) | 68(17.44) | 46(11.79) | 
| HD | 390 | 276(70.77) | 114(29.23) | 71(18.21) | 43(11.02) | 
| HW | 388 | 272(70.10) | 116(29.90) | 75(19.33) | 41(10.57) | 
| WD | 389 | 274(70.44) | 115(29.56) | 75(19.28) | 40(10.28) | 
| WW | 390 | 276(70.77) | 115(29.23) | 69(17.69) | 45(11.54) | 
| 5-HT | 388 | 272(70.10) | 116(29.90) | 68(17.53) | 48(12.37) | 
| 5-HY | 389 | 274(70.44) | 115(29.56) | 63(16.20) | 52(13.36) | 
| 5-HD | 389 | 274(70.44) | 115(29.56) | 67(17.22) | 48(12.34) | 
| 5-HW | 389 | 274(70.44) | 115(29.56) | 64(16.45) | 51(13.11) | 
| 5-WD | 389 | 274(70.44) | 115(29.56) | 67(17.22) | 48(12.34) | 
| 5-WW | 389 | 274(70.44) | 115(29.56) | 68(17.48) | 47(12.08) | 
表1 水曲柳合子胚子叶外植体基因组DNA在CCGG位点的胞嘧啶甲基化水平
Table 1 The cytosine methylation level of genomic DNA at CCGG site in Fraxinus mandshurica zygotic cotyledons
| 外植体类型 Explant type  |  总位点 Total sites  |  未甲基化位点数(占比) Non-methylation sites (ratio/%)  |  甲基化的CCGG位点数(占比/%) Methylation sites of CCGG(ratio/%) | ||
|---|---|---|---|---|---|
| 甲基化总位点 Methylation total sites  |  全甲基化位点 Holomethylation sites  |  半甲基化位点 Semimethylation site  | |||
| HT | 381 | 268(70.34) | 113(29.66) | 68(17.85) | 45(11.79) | 
| HY | 390 | 276(70.77) | 114(29.23) | 68(17.44) | 46(11.79) | 
| HD | 390 | 276(70.77) | 114(29.23) | 71(18.21) | 43(11.02) | 
| HW | 388 | 272(70.10) | 116(29.90) | 75(19.33) | 41(10.57) | 
| WD | 389 | 274(70.44) | 115(29.56) | 75(19.28) | 40(10.28) | 
| WW | 390 | 276(70.77) | 115(29.23) | 69(17.69) | 45(11.54) | 
| 5-HT | 388 | 272(70.10) | 116(29.90) | 68(17.53) | 48(12.37) | 
| 5-HY | 389 | 274(70.44) | 115(29.56) | 63(16.20) | 52(13.36) | 
| 5-HD | 389 | 274(70.44) | 115(29.56) | 67(17.22) | 48(12.34) | 
| 5-HW | 389 | 274(70.44) | 115(29.56) | 64(16.45) | 51(13.11) | 
| 5-WD | 389 | 274(70.44) | 115(29.56) | 67(17.22) | 48(12.34) | 
| 5-WW | 389 | 274(70.44) | 115(29.56) | 68(17.48) | 47(12.08) | 
| 模式类型 Type of Patterns  |  位点类型Type of sites | HT |  HY |  HD |  HW |  WD |  5-HT |  5-HY |  5-HD |  5-HW |  5-WD |  5-WW | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 未褐化未 长大WW  |  其他类型 Other types  | ||||||||||||||
| H | M | H | M | ||||||||||||
| 1 | - | - | - | - | 23 | 21 | 15 | 21 | 24 | 21 | 17 | 18 | 16 | 19 | 19 | 
| 2 | + | - | - | - | 1 | 2 | 1 | 0 | 0 | 3 | 7 | 6 | 7 | 5 | 5 | 
| 3 | - | + | - | - | 0 | 1 | 8 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 4 | - | - | + | - | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 3 | 1 | 2 | 3 | 
| 5 | + | - | + | - | 44 | 44 | 42 | 41 | 40 | 45 | 45 | 42 | 44 | 43 | 42 | 
| 6 | + | + | + | - | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 7 | - | - | - | + | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 
| 8 | - | + | - | + | 43 | 44 | 44 | 45 | 45 | 45 | 44 | 43 | 43 | 43 | 43 | 
| 9 | + | + | - | + | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| 10 | + | - | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| 11 | - | + | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| 12 | + | + | + | + | 274 | 272 | 272 | 270 | 270 | 272 | 274 | 272 | 272 | 272 | 272 | 
表2 5-氮胞苷处理与未处理水曲柳合子胚子叶外植体基因组DNA在CCGG位点的胞嘧啶甲基化模式
Table 2 Patterns of genomic DNA methylation of cytosine at CCGG sites in 5-azacytidine treated and non-treated Fraxinus mandshurica zygomic cotyledons
| 模式类型 Type of Patterns  |  位点类型Type of sites | HT |  HY |  HD |  HW |  WD |  5-HT |  5-HY |  5-HD |  5-HW |  5-WD |  5-WW | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 未褐化未 长大WW  |  其他类型 Other types  | ||||||||||||||
| H | M | H | M | ||||||||||||
| 1 | - | - | - | - | 23 | 21 | 15 | 21 | 24 | 21 | 17 | 18 | 16 | 19 | 19 | 
| 2 | + | - | - | - | 1 | 2 | 1 | 0 | 0 | 3 | 7 | 6 | 7 | 5 | 5 | 
| 3 | - | + | - | - | 0 | 1 | 8 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 4 | - | - | + | - | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 3 | 1 | 2 | 3 | 
| 5 | + | - | + | - | 44 | 44 | 42 | 41 | 40 | 45 | 45 | 42 | 44 | 43 | 42 | 
| 6 | + | + | + | - | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 7 | - | - | - | + | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 
| 8 | - | + | - | + | 43 | 44 | 44 | 45 | 45 | 45 | 44 | 43 | 43 | 43 | 43 | 
| 9 | + | + | - | + | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| 10 | + | - | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| 11 | - | + | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| 12 | + | + | + | + | 274 | 272 | 272 | 270 | 270 | 272 | 274 | 272 | 272 | 272 | 272 | 
| 变异类型 Mutation types  |  带型Types | 数量Number | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 未褐化未 长大WW  |  其他类型 Other types  |  HT | HY | HD | HW | WD | 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | ||||
| H | M | H | M | |||||||||||||
| A | A1 | + | + | + | - | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 
| A2 | + | + | - | + | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |
| B | B1 | + | - | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| B2 | + | - | - | - | 1 | 2 | 1 | 0 | 0 | 3 | 7 | 6 | 7 | 5 | 5 | |
| C | C1 | - | + | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| C2 | - | + | - | - | 0 | 1 | 8 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| D | D1 | - | - | + | - | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 3 | 1 | 2 | 3 | 
| D2 | - | - | - | + | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | |
| 总计Total | 6 | 9 | 17 | 13 | 11 | 7 | 10 | 15 | 15 | 13 | 14 | |||||
表3 5-氮胞苷处理与未处理水曲柳合子胚子叶外植体基因组DNA在CCGG位点的胞嘧啶甲基化变异模式
Table 3 Mutation patterns of genomic DNA methylation of cytosine at CCGG sites in 5-azacytidine treated and non-treated Fraxinus mandshurica zygotic cotyledons
| 变异类型 Mutation types  |  带型Types | 数量Number | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 未褐化未 长大WW  |  其他类型 Other types  |  HT | HY | HD | HW | WD | 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | ||||
| H | M | H | M | |||||||||||||
| A | A1 | + | + | + | - | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 
| A2 | + | + | - | + | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |
| B | B1 | + | - | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| B2 | + | - | - | - | 1 | 2 | 1 | 0 | 0 | 3 | 7 | 6 | 7 | 5 | 5 | |
| C | C1 | - | + | + | + | 1 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 2 | 
| C2 | - | + | - | - | 0 | 1 | 8 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
| D | D1 | - | - | + | - | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 3 | 1 | 2 | 3 | 
| D2 | - | - | - | + | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | |
| 总计Total | 6 | 9 | 17 | 13 | 11 | 7 | 10 | 15 | 15 | 13 | 14 | |||||
| 模式类型 Pattern types  |  位点类型Site types | 数量Number | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 对照Control | 其他类型Other types | 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | |||
| H | M | H | M | |||||||
| 1 | - | - | - | - | 21 | 16 | 11 | 16 | 21 | 19 | 
| 2 | + | - | - | - | 2 | 5 | 6 | 7 | 6 | 5 | 
| 3 | - | + | - | - | 1 | 0 | 0 | 1 | 0 | 0 | 
| 4 | - | - | + | - | 0 | 0 | 2 | 0 | 0 | 3 | 
| 5 | + | - | + | - | 45 | 46 | 41 | 41 | 40 | 42 | 
| 6 | - | - | - | + | 0 | 2 | 9 | 2 | 1 | 1 | 
| 7 | + | - | - | + | 0 | 0 | 0 | 2 | 0 | 0 | 
| 8 | - | + | - | + | 44 | 44 | 44 | 45 | 45 | 43 | 
| 9 | + | + | - | + | 0 | 1 | 1 | 2 | 2 | 1 | 
| 10 | + | - | + | + | 1 | 1 | 1 | 1 | 2 | 0 | 
| 11 | - | + | + | + | 2 | 1 | 1 | 0 | 0 | 2 | 
| 12 | + | + | + | + | 272 | 272 | 272 | 270 | 270 | 272 | 
表4 5-氮胞苷处理的水曲柳合子胚子叶外植体的基因组DNA在CCGG位点的胞嘧啶甲基化模式
Table 4 Patterns of genomic DNA methylation of cytosine at CCGG sites in 5-azacytidine treated Fraxinus mandshurica zygotic cotyledons
| 模式类型 Pattern types  |  位点类型Site types | 数量Number | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 对照Control | 其他类型Other types | 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | |||
| H | M | H | M | |||||||
| 1 | - | - | - | - | 21 | 16 | 11 | 16 | 21 | 19 | 
| 2 | + | - | - | - | 2 | 5 | 6 | 7 | 6 | 5 | 
| 3 | - | + | - | - | 1 | 0 | 0 | 1 | 0 | 0 | 
| 4 | - | - | + | - | 0 | 0 | 2 | 0 | 0 | 3 | 
| 5 | + | - | + | - | 45 | 46 | 41 | 41 | 40 | 42 | 
| 6 | - | - | - | + | 0 | 2 | 9 | 2 | 1 | 1 | 
| 7 | + | - | - | + | 0 | 0 | 0 | 2 | 0 | 0 | 
| 8 | - | + | - | + | 44 | 44 | 44 | 45 | 45 | 43 | 
| 9 | + | + | - | + | 0 | 1 | 1 | 2 | 2 | 1 | 
| 10 | + | - | + | + | 1 | 1 | 1 | 1 | 2 | 0 | 
| 11 | - | + | + | + | 2 | 1 | 1 | 0 | 0 | 2 | 
| 12 | + | + | + | + | 272 | 272 | 272 | 270 | 270 | 272 | 
| 甲基化变异类型 Methylation mutation types  |  数量Number | ||||||
|---|---|---|---|---|---|---|---|
| 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | ||
| 甲基化上升位点 | CNG位点升高CNG increase sites | 0 | 0 | 0 | 0 | 0 | 0 | 
| Methylation increase site | CG位点升高CG increase sites | 0 | 1 | 1 | 2 | 2 | 1 | 
| CG/CNG位点升高CG/CNG increase sites | 0 | 0 | 0 | 0 | 0 | 0 | |
| 甲基化位点上升总数(比例)Total methylation increase sites(rate) | 0(0) | 1(20%) | 1(7.15%) | 2(40%) | 2(40%) | 1(40%) | |
| 甲基化下降的位点 | CNG位点下降CNG decreased site | 1 | 3 | 12 | 3 | 3 | 1 | 
| Decreased methylation site | CG位点下降CG decreased site | 2 | 1 | 1 | 0 | 0 | 2 | 
| CG/CNG下降位点CG/CNG decreased site | 0 | 0 | 0 | 0 | 0 | 0 | |
| 甲基化位点下降总数(比例)Total methylation decreased sites(rate) | 3(100%) | 4(80%) | 13(92.85%) | 3(60%) | 3(60%) | 3(75%) | |
| 甲基化总变异位点Total methylation mutation sites | 3 | 5 | 14 | 5 | 5 | 4 | |
表5 5-氮胞苷处理的水曲柳合子胚子叶外植体基因组DNA在CCGG位点的胞嘧啶甲基化变异
Table 5 Mutation patterns of genomic DNA methylation of cytosine at CCGG sites in 5-azacytidine treated Fraxinus mandshurica zygotic cotyledons
| 甲基化变异类型 Methylation mutation types  |  数量Number | ||||||
|---|---|---|---|---|---|---|---|
| 5-HT | 5-HY | 5-HD | 5-HW | 5-WD | 5-WW | ||
| 甲基化上升位点 | CNG位点升高CNG increase sites | 0 | 0 | 0 | 0 | 0 | 0 | 
| Methylation increase site | CG位点升高CG increase sites | 0 | 1 | 1 | 2 | 2 | 1 | 
| CG/CNG位点升高CG/CNG increase sites | 0 | 0 | 0 | 0 | 0 | 0 | |
| 甲基化位点上升总数(比例)Total methylation increase sites(rate) | 0(0) | 1(20%) | 1(7.15%) | 2(40%) | 2(40%) | 1(40%) | |
| 甲基化下降的位点 | CNG位点下降CNG decreased site | 1 | 3 | 12 | 3 | 3 | 1 | 
| Decreased methylation site | CG位点下降CG decreased site | 2 | 1 | 1 | 0 | 0 | 2 | 
| CG/CNG下降位点CG/CNG decreased site | 0 | 0 | 0 | 0 | 0 | 0 | |
| 甲基化位点下降总数(比例)Total methylation decreased sites(rate) | 3(100%) | 4(80%) | 13(92.85%) | 3(60%) | 3(60%) | 3(75%) | |
| 甲基化总变异位点Total methylation mutation sites | 3 | 5 | 14 | 5 | 5 | 4 | |
| [23] | SIVANESAN I, NAYEEM S, VENKIDASAMY B, et al. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review[J]. Biologia Futura, 2022, 73(3): 259-277. | 
| [24] | CHAKRABARTY D, YU K W, PAEK K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng(Eleuterococcus senticosus)[J]. Plant Science, 2003, 165(1): 61-68. | 
| [25] | NIC-CAN G I, LÓPEZ-TORRES A, BARREDO-POOL F, et al. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora[J]. PLoS One, 2013, 8(8): e72160. | 
| [26] | CHEN R Z, CHEN X H, HUO W, et al. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in Longan[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(3): 311-323. | 
| [1] | KONG D M, PREECE J E, SHEN H L. Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.)[J]. Plant Cell, Tissue and Organ Culture, 2012, 108(3): 485-492. | 
| [2] | LELU-WALTER M A, THOMPSON D, HARVENGT L, et al. Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction[J]. Tree Genetics & Genomes, 2013, 9(4): 883-899. | 
| [3] | US-CAMAS R, RIVERA-SOLÍS G, DUARTE-AKÉ F, et al. In vitro culture: an epigenetic challenge for plants[J]. Plant Cell, Tissue and Organ Culture, 2014, 118(2): 187-201. | 
| [4] | 刘艳, 沈海龙, 丛建民. 5-氮胞苷对水曲柳合子胚外植体状态及体胚发生的影响[J]. 东北林业大学学报, 2011, 39(8): 25-27, 32. | 
| LIU Y, SHEN H L, CONG J M. Effect of 5-azacytidine on zygotic Cotyledon explants and somatic embryogenesis of Fraxinus mandshurica[J]. Journal of Northeast Forestry University, 2011, 39(8): 25-27, 32. (in Chinese with English abstract) | |
| [5] | HORSTHEMKE B. The inheritance of epigenetic defects[J]. Medizinische Genetik, 2017, 29(1): 1-7. | 
| [6] | ZHANG H M, LANG Z B, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nature Reviews Molecular Cell Biology, 2018, 19(8): 489-506. | 
| [7] | BRAVO S, BERTÍN A, TURNER A, et al. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don[J]. Plant Cell, Tissue and Organ Culture, 2017, 130(3): 521-529. | 
| [27] | FRAGA H P F, VIEIRA L N, CAPRESTANO C A, et al. 5-Azacytidine combined with 2, 4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels[J]. Plant Cell Reports, 2012, 31(12): 2165-2176. | 
| [8] | RAZIN A, RIGGS A D. DNA methylation and gene function[J]. Science, 1980, 210(4470): 604-610. | 
| [9] | LEE K, SEO P J. Dynamic epigenetic changes during plant regeneration[J]. Trends in Plant Science, 2018, 23(3): 235-247. | 
| [10] | SALAÜN C, LEPINIEC L, DUBREUCQ B. Genetic and molecular control of somatic embryogenesis[J]. Plants, 2021, 10(7): 1467. | 
| [11] | 国颖, 杨港归, 吴雨涵, 等. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. | 
| GUO Y, YANG G G, WU Y H, et al. Recent advances in molecular regulatory mechanisms of DNA methylation in plant tissue culture[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2023, 47(6): 1-8. (in Chinese with English abstract) | |
| [12] | LOSCHIAVO F, PITTO L, GIULIANO G, et al. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs[J]. Theoretical and Applied Genetics, 1989, 77(3): 325-331. | 
| [13] | 丛建民, 陈凤清, 沈海龙, 等. 水曲柳胚后熟时期MSAP分析[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 39-44. | 
| CONG J M, CHEN F Q, SHEN H L, et al. Research on the features of DNA methylation in embryo ripening period of Fraxinus mandshurica Rupr. based on the method of MSAP[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3): 39-44. (in Chinese with English abstract) | |
| [14] | RUIZ-GARCÍA L, CERVERA M T, MARTÍNEZ-ZAPATER J M. DNA methylation increases throughout Arabidopsis development[J]. Planta, 2005, 222(2): 301-306. | 
| [15] | MAHDAVI-DARVARI F, NOOR N M, ISMANIZAN I. Epigenetic regulation and gene markers as signals of early somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 2015, 120(2): 407-422. | 
| [16] | KARIM R, NURUZZAMAN M, KHALID N, et al. Importance of DNA and histone methylation in in vitro plant propagation for crop improvement: a review[J]. Annals of Applied Biology, 2016, 169(1): 1-16. | 
| [17] | KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda(L.) Mansf[J]. Physiology and Molecular Biology of Plants, 2018, 24(5): 741-751. | 
| [18] | JONES P A, TAYLOR S M. Cellular differentiation, cytidine analogs and DNA methylation[J]. Cell, 1980, 20(1): 85-93. | 
| [19] | 方学良, 付铭, 陈正, 等. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35. | 
| FANG X L, FU M, CHEN Z, et al. 5-Azacytidine regulating plant gene expression: research progress and application prospect[J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. (in Chinese with English abstract) | |
| [20] | REIS E, BATISTA M T, CANHOTO J M. Effect and analysis of phenolic compounds during somatic embryogenesis induction in Feijoa sellowiana Berg[J]. Protoplasma, 2008, 232(3): 193-202. | 
| [21] | NEUENSCHWANDER B, BAUMANN T W. A novel type of somatic embryogenesis in Coffea arabica[J]. Plant Cell Reports, 1992, 10(12): 608-612. | 
| [22] | 张建瑛, 殷东生. 基于DNA甲基化的林木体细胞胚胎发生研究进展[J]. 世界林业研究, 2022, 35(6): 36-41. | 
| ZHANG J Y, YIN D S. Research advances in somatic embryogenesis of forest trees based on DNA methylation[J]. World Forestry Research, 2022, 35(6): 36-41. (in Chinese with English abstract) | 
| [1] | 岳建华, 董艳, 李文杨, 李蒙, 张琰. pH对百子莲体胚诱导期生理特性的影响[J]. 浙江农业学报, 2020, 32(8): 1405-1414. | 
| [2] | 陈曦, 杨芳, 李捷, 白利鹏, 李丹婷, 曹随忠, 沈留红, 余树民. 性成熟前猪睾丸组织中印记基因DNA甲基化状态分析[J]. 浙江农业学报, 2017, 29(5): 722-728. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||