[1] 李迎春, 马进. 冬小麦赤霉病发生规律及防治技术[J]. 陕西农业科学, 2016, 62(5):125-126. LI Y C, MA J.Occurance and prevention and control technology of winter wheat scab[J]. Shaanxi Journal of Agricultural Sciences, 2016, 62(5): 125-126. (in Chinese) [2] PALACIOS S A, ERAZO J G, CIASCA B, et al.Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina[J]. Food Chemistry, 2017, 230: 728-734. [3] MALLMANN C A, DILKIN P, MALLMANN A O, et al.Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: an eight-year (2008 to 2015) summary[J]. Tropical Plant Pathology, 2017, 42(3): 146-152. [4] PEIRIS K H S, DONG Y, DAVIS M A, et al. Estimation of the deoxynivalenol and moisture contents of bulk wheat grain samples by FT-NIR spectroscopy[J]. Cereal Chemistry, 2017, 94(4): 677-682. [5] BAURIEGEL E, GIEBEL A, GEYER M, et al.Early detection of Fusarium infection in wheat using hyper-spectral imaging[J]. Computers and Electronics in Agriculture, 2011, 75(2): 304-312. [6] DAMMER K H, MÖLLER B, RODEMANN B, et al. Detection of head blight (Fusarium ssp.) in winter wheat by color and multispectral image analyses[J]. Crop Protection, 2011, 30(4): 420-428. [7] 梁琨, 杜莹莹, 卢伟, 等. 基于高光谱成像技术的小麦籽粒赤霉病识别[J]. 农业机械学报, 2016, 47(2):309-315. LIANG K, DU Y Y, LU W, et al.Identification of Fusarium head blight wheat based on hyperspectral imaging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 309-315. (in Chinese with English abstract) [8] WANG H, QIN F, RUAN L, et al.Identification and severity determination of wheat stripe rust and wheat leaf rust based on hyperspectral data acquired using a black-paper-based measuring method[J]. PLoS One, 2016, 11(4): e0154648. [9] 刘占宇, 祝增荣, 赵敏, 等. 基于主成分分析和人工神经网络的稻穗健康状态的高光谱识别[J]. 浙江农业学报, 2011, 23(3):607-616. LIU Z Y, ZHU Z R, ZHAO M, et al.Hyperspectral discrimination of different health conditions in rice panicles based on principal component analysis and artificial neural network[J]. Acta Agriculturae Zhejiangensis, 2011, 23(3): 607-616. (in Chinese with English abstract) [10] 齐浩, 王振锡, 岳俊, 等. 基于叶片光谱特征的南疆盆地主栽果树树种遥感识别[J]. 浙江农业学报, 2015, 27(12): 2142-2146. QI H, WANG Z X, YUE J, et al.Remote sensing identification of main fruit tree species based on leaf spectral feature in southern Xinjiang basin[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2142-2146. (in Chinese with English abstract) [11] MOHANTY S P, HUGHES D P, SALATHÉ M.Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 1419. [12] PICON A, ALVAREZ-GILA A, SEITZ M, et al. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild[EB/OL]. (2018-04-21) [2018-06-14]. https://www.sciencedirect.com/science/article/pii/S0168169917312619. [13] YUE J, ZHAO W, MAO S, et al.Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6): 468-477. [14] HU W, HUANG Y, WEI L, et al.Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 258619. [15] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al.Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015: 4959-4962. [16] HAN S S, PARK G H, LIM W, et al.Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network[J]. PLoS One, 2018, 13(1): e0191493. [17] TANG Z, LUO L, PENG H, et al.A joint residual network with paired ReLUs activation for image super-resolution[J]. Neurocomputing, 2018, 273: 37-46. [18] LE T H N, DUONG C N, HAN L, et al. Deep contextual recurrent residual networks for scene labeling[J]. Pattern Recognition, 2018, 80: 32-41. [19] GÜÇLÜTÜRK Y, GÜÇLÜ U, BARO X, et al. Multimodal first impression analysis with deep residual networks[J]. IEEE Transactions on Affective Computing, 2017, 9(3): 316-329. [20] YU L, CHEN H, DOU Q, et al.Automated melanoma recognition in dermoscopy images via very deep residual networks[J]. IEEE Transactions on Medical Imaging, 2017, 36(4): 994-1004. [21] LIU Z, WU Q, ZHANG Y, et al.Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(1): 37-47. [22] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[EB/OL]. (2015-12-03)[2018-06-14]. https://arxiv.org/pdf/1511.07289v2.pdf. [23] BOURDÈS V, BONNEVAY S, LISBOA P, et al. Comparison of artificial neural network with logistic regression as classification models for variable selection for prediction of breast cancer patient outcomes[J]. Advances in Artificial Neural Systems, 2010, 2010: 309841. [24] VINCENT P, LAROCHELLE H, BENGIO Y, et al.Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning, 2008: 1096-1103. [25] LEE Y M, KIM J H.Robust and reliable feature extractor training by using unsupervised pre-training with self-organization map[M]//Robot Intelligence Technology and Applications. Cham, Switzerland: Springer, 2015: 159-170. [26] CHIN W S, ZHUANG Y, JUAN Y C, et al.A learning-rate schedule for stochastic gradient methods to matrix factorization[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham, Switzerland: Springer, 2015: 442-455. [27] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al.Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |