[1] KHLIJI S, VAN DE VEN R, LAMB T A, et al. Relationship between consumer ranking of lamb colour and objective measures of colour[J]. Meat Science, 2010, 85(2): 224-229. [2] NGAPO T M, MARTIN J F, DRANSFIELD E.International preferences for pork appearance: I. Consumer choices[J]. Food Quality and Preference, 2007, 18(1): 26-36. [3] PHUNG V T, KHATRI M, LILAND K H, et al.Mitochondrial oxygen consumption in permeabilized fibers and its link to colour changes in bovine M. semimembranosus muscle[J]. Meat Science, 2013, 93(1): 128-137. [4] MANCINI R A, HUNT M C.Current research in meat color[J]. Meat Science, 2005, 71(1): 100-121. [5] HUGHES J M, OISETH S K, PURSLOW P P, et al.A structural approach to understanding the interactions between colour, water-holding capacity and tenderness[J]. Meat Science, 2014, 98(3): 520-532. [6] LARRAÍN R E, SCHAEFER D M, REED J D. Use of digital images to estimate CIE color coordinates of beef[J]. Food Research International, 2008, 41(4): 380-385. [7] TRINDERUP C H, KIM Y H B. Fresh meat color evaluation using a structured light imaging system[J]. Food Research International, 2015, 71: 100-107. [8] 刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 223-229. LIU H, WANG Y Q, WANG X M, et al.Study on detection method of wheat unsound kernel based on near-infrared hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 223-229.(in Chinese with English abstract) [9] 段宏伟, 朱荣光, 许卫东, 等. 基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测[J]. 光谱学与光谱分析, 2017, 37(3): 847-852. DUAN H W, ZHU R G, XU W D, et al.Hyperspectral imaging detection of total viable count from vacuum packing cooling mutton based on GA and CARS algorithms[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 847-852.(in Chinese with English abstract) [10] 王松磊, 吴龙国, 康宁波, 等. 基于高光谱图谱融合技术的宁夏滩羊肉嫩度检测方法研究[J]. 光电子·激光, 2016, 27(9): 987-995. WANG S L, WU L G, KANG N B, et al.Study on Tan-lamb mutton tenderness by using the fusion of hyperspectral spectrum and image information[J]. Journal of Optoelectronics·Laser, 2016, 27(9): 987-995.(in Chinese with English abstract) [11] 高晓东, 吴建虎, 彭彦昆, 等. 基于高光谱成像技术的牛肉大理石花纹的评估[J]. 农产品加工(学刊), 2009(10): 33-37. GAO X D, WU J H, PENG Y K, et al.Analysis of beef-marbling grade using hyperspectral imaging technology[J]. Academic Periodical of Farm Products Processing, 2009(10): 33-37.(in Chinese with English abstract) [12] JIA B B, YOON S C, ZHUANG H, et al.Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging[J]. Journal of Food Engineering, 2017, 208: 57-65. [13] FENG C H, MAKINO Y, OSHITA S, et al.Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances[J]. Food Control, 2018, 84: 165-176. [14] 赵娟, 彭彦昆. 基于高光谱图像纹理特征的牛肉嫩度分布评价[J]. 农业工程学报, 2015, 31(7): 279-286. ZHAO J, PENG Y K.Distribution of beef tenderness grading based on texture features by hyperspectral image analysis[J]. Transactions of the CSAE, 2015, 31(7): 279-286.(in Chinese with English abstract) [15] 吴龙国, 何建国, 刘贵珊, 等. 基于近红外高光谱成像技术的长枣含水量无损检测[J]. 光电子·激光, 2014, 25(1): 135-140. WU L G, HE J G, LIU G S, et al.Non-destructive determination of moisture in jujubes based on near-infrared hyperspectral imaging technique[J]. Journal of Optoelectronics·Laser, 2014, 25(1): 135-140.(in Chinese with English abstract) [16] 丁佳兴, 吴龙国, 何建国, 等. 高光谱成像技术对灵武长枣果皮强度的无损检测[J]. 食品工业科技, 2016, 37(24): 58-62, 68. DING J X, WU L G, HE J G, et al.Non-destructive determination of pericarp break force of Lingwu long jujube by hyperspectral imaging technology[J]. Science and Technology of Food Industry, 2016, 37(24): 58-62, 68.(in Chinese with English abstract) |