[1] 中华人民共和国生态环境部. 全国环境统计公报(2015年)[EB/OL]. (2017-02-23) [2019-10-14]. http://www.mee.gov.cn/gzfw_13107hjtjqghjtjgb/201702/t20170223_397419.shtml. [2] DE GODOS I, VARGAS V A, BLANCO S, et al.A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation[J]. Bioresource Technology, 2010, 101(14): 5150-5158. [3] DE BHOWMICK G, SARMAH A K, SEN R.Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability[J]. Science of the Total Environment, 2019, 650: 2467-2482. [4] ZHU L D, YAN C, LI Z H.Microalgal cultivation with biogas slurry for biofuel production[J]. Bioresource Technology, 2016, 220: 629-636. [5] LUO L Z, LIN X A, ZENG F J, et al.Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: operation parameters, microbial diversity and nutrient recovery potential[J]. Bioresource Technology, 2019, 272: 421-432. [6] COLMAN B, HUERTAS I E, BHATTI S, et al.The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae[J]. Functional Plant Biology, 2002, 29(3): 261. [7] MORONEY J V.Carbon concentrating mechanisms in aquatic photosynthetic organisms: a report on CCM 2001[J]. Journal of Phycology, 2001, 37(6): 928-931. [8] MILLER A G, COLMAN B.Evidence for HCO-3 transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis[J]. Plant Physiology, 1980, 65(2): 397-402. [9] SÜLTEMEYER D F, FOCK H P, CANVIN D T. Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO-3 and CO2 and characterization of active CO2 transport[J]. Canadian Journal of Botany, 1991, 69(5): 995-1002. [10] HUERTAS I E, COLMAN B, ESPIE G S, et al.Active transport of CO2 by three species of marine microalgae[J]. Journal of Phycology, 2001, 36(2): 314-320. [11] HUERTAS I E, LUBIÁN L M. Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris(Chlorophyceae) and Nannochloropsis(Eustigmatophyceae) species[J]. Canadian Journal of Botany, 1998, 76(6): 1104-1108. [12] 苏旭东. 混合微藻固定无机碳的影响因素及效果研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. SU X D.Research on the impact factors and effects of inorganic carbon fixation by mixed microalgae[D]. Harbin: Harbin Engineering University, 2012.(in Chinese with English abstract) [13] 刘晓娟. 三角褐指藻的自养、兼养和异养特性研究[D]. 广州: 暨南大学, 2008. LIU X J.Characteristics of photoautotrophy, mixotrophy and heterotrophy of Phaeodactylum tricornutum[D]. Guangzhou: Jinan University, 2008.(in Chinese with English abstract) [14] 王永华. 隐甲藻高密度发酵培养和油脂改性研究[D]. 广州: 华南理工大学, 2002. WANG Y H.High density culture of Crypthediunm cohnni and studies on oil modification[D]. Guangzhou: South China University of Technology, 2002.(in Chinese with English abstract) [15] MANNAN R M, PAKRASI H B.Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413[J]. Plant Physiology, 1993, 103(3): 971-977. [16] BOUARAB L, DAUTA A, LOUDIKI M.Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration[J]. Water Research, 2004, 38(11): 2706-2712. [17] ANDERSON S L, MCINTOSH L.Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process[J]. Journal of Bacteriology, 1991, 173(9): 2761-2767. [18] QU W Y, ZHANG C F, ZHANG Y P, et al.Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28[J]. Bioresource Technology, 2019, 289: 121702. [19] WANG Y, HO S H, CHENG C L, et al.Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production[J]. Bioresource Technology, 2017, 242: 7-14. [20] SUN Z L, SUN L Q, CHEN G Z.Microalgal cultivation and nutrient removal from digested piggery wastewater in a thin-film flat plate photobioreactor[J]. Applied Biochemistry and Biotechnology, 2019, 187(4): 1488-1501. [21] CAO L P, ZHOU T, LI Z H, et al.Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater[J]. Bioresource Technology, 2018, 263: 10-16. [22] MAESTRINI S Y, ROBERT J M, LEFTLEY J W, et al.Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae[J]. Journal of Experimental Marine Biology and Ecology, 1986, 102(1): 75-98. [23] GARCÍA J, MUJERIEGO R, HERNÁNDEZ-MARINÉ M. High rate algal pond operating strategies for urban wastewater nitrogen removal[J]. Journal of Applied Phycology, 2000, 12(3): 331-339. [24] ABOU-SHANAB R A I, JI M K, KIM H C, et al. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production[J]. Journal of Environmental Management, 2013, 115: 257-264. [25] ZHU L D, WANG Z M, SHU Q, et al.Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment[J]. Water Research, 2013, 47(13): 4294-4302. [26] LIU J Z, GE Y M, CHENG H X, et al.Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system[J]. Bioresource Technology, 2013, 139: 190-194. [27] CHENG H X, TIAN G M.Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent[J]. Desalination and Water Treatment, 2013, 51(13/14/15): 2768-2775. [28] CAI T, PARK S Y, LI Y B.Nutrient recovery from wastewater streams by microalgae: status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 360-369. [29] MARTÍNEZ M E, JIMÉNEZ J M, EL YOUSFI F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus[J]. Bioresource Technology, 1999, 67(3): 233-240. [30] KUENZLER E J.Glucose-6-phosphate utilization by marine algae[J]. Journal of Phycology, 1965, 1(4): 156-164. [31] YI Y J, YANG Z F, ZHANG S H.Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 2011, 159(10): 2575-2585. [32] SEKOMO C B, ROUSSEAU D P L, SALEH S A, et al. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment[J]. Ecological Engineering, 2012, 44: 102-110. [33] YANG S, XU J, WANG Z M, et al.Cultivation of oleaginous microalgae for removal of nutrients and heavy metals from biogas digestates[J]. Journal of Cleaner Production, 2017, 164: 793-803. [34] MARKOU G, WANG L, YE J F, et al.Using agro-industrial wastes for the cultivation of microalgae and duckweeds: contamination risks and biomass safety concerns[J]. Biotechnology Advances, 2018, 36(4): 1238-1254. [35] 马浩天, 李润植, 张宏江, 等. 基于微藻培养处理畜禽养殖废水的研究进展[J]. 生物技术通报, 2018(11): 83-90. MA H T, LI R Z, ZHANG H J, et al.Research progress on the treatment of wastewater from poultry and livestock breeding based on the microalgae cultivation[J]. Biotechnology Bulletin, 2018(11): 83-90.(in Chinese with English abstract) [36] MONTEIRO C M, CASTRO P M L, MALCATA F X. Metal uptake by microalgae: underlying mechanisms and practical applications[J]. Biotechnology Progress, 2012, 28(2): 299-311. [37] 支田田, 程丽华, 徐新华, 等. 藻类去除水体中重金属的机理及应用[J]. 化学进展, 2011, 23(8): 1782-1794. ZHI T T, CHENG L H, XU X H, et al.Advances on heavy metals removal from aqueous solution by algae[J]. Progress in Chemistry, 2011, 23(8): 1782-1794.(in Chinese with English abstract) [38] NORVILL Z N, SHILTON A, GUIEYSSE B.Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps[J]. Journal of Hazardous Materials, 2016, 313: 291-309. [39] DE GODOS I, MUÑOZ R, GUIEYSSE B. Tetracycline removal during wastewater treatment in high-rate algal ponds[J]. Journal of Hazardous Materials, 2012, 229/230: 446-449. [40] NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al.Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology, 2017, 232: 35-43. [41] SANTAEUFEMIA S, TORRES E, MERA R, et al.Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum[J]. Journal of Hazardous Materials, 2016, 320: 315-325. [42] SHI W X, WANG L Z, ROUSSEAU D P L, et al. Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems[J]. Environmental Science and Pollution Research, 2010, 17(4): 824-833. [43] CHENG D L, NGO H H, GUO W S, et al.Microalgae biomass from swine wastewater and its conversion to bioenergy[J]. Bioresource Technology, 2019, 275: 109-122. [44] ZHANG Y L, HABTESELASSIE M Y, RESURRECCION E P, et al.Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(11): 2544-2553. [45] 程海翔. 一株栅藻的分离培养及其应用于养猪废水处理的潜力研究[D]. 杭州: 浙江大学, 2013. CHENG H X.Research on isolation and cultivation of a new microalga and the potential of its application for treating piggery wastewater[D]. Hangzhou: Zhejiang University, 2013.(in Chinese with English abstract) [46] 邵瑜. 微藻对养猪废水氮磷的资源化利用研究[D]. 杭州: 浙江大学, 2016. SHAO Y.Research on the removal of nitrogen and phosphorus in piggery wastewater by microalgae[D]. Hangzhou: Zhejiang University, 2016.(in Chinese with English abstract) [47] KOUTRA E, GRAMMATIKOPOULOS G, KORNAROS M.Selection of microalgae intended for valorization of digestate from agro-waste mixtures[J]. Waste Management, 2018, 73: 123-129. [48] WANG Y, GUO W Q, YEN H W, et al.Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresource Technology, 2015, 198: 619-625. [49] WANG L, WANG Y K, CHEN P, et al.Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures[J]. Applied Biochemistry and Biotechnology, 2010, 162(8): 2324-2332. [50] PARK S, KIM J, YOON Y, et al.Blending water-and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014[J]. Bioresource Technology, 2015, 198: 388-394. [51] 罗龙皂, 邵瑜, 田光明. 基于微藻培养的养猪废水氨氮吹脱预处理[J]. 浙江大学学报(工学版), 2017, 51(10): 2055-2060. LUO L Z, SHAO Y, TIAN G M.Ammonia stripping of piggery wastewater for microalgae culturing[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 2055-2060. (in Chinese with English abstract) [52] LARSDOTTER K.Wastewater treatment with microalgae: a literature review[J]. Vatten, 2006, 62(1): 31-38. [53] ZHOU W G, HU B, LI Y C, et al.Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production[J]. Applied Biochemistry and Biotechnology, 2012, 168(2): 348-363. [54] LUO L Z, SHAO Y, LUO S, et al.Nutrient removal from piggery wastewater by Desmodesmus sp. CHX1 and its cultivation conditions optimization[J]. Environmental Technology, 2019, 40(21): 2739-2746. [55] MORENO-GARCIA L, GARIÉPY Y, BOURDEAU N, et al. Optimization of the proportions of four wastewaters in a blend for the cultivation of microalgae using a mixture design[J]. Bioresource Technology, 2019, 283: 168-173. [56] SABETI M B, HEJAZI M A, KARIMI A.Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: multi-objective optimization and CFD simulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 639-648. [57] ZHANG B, CHEN S F.Optimization of culture conditions for Chlorella sorokiniana using swine manure wastewater[J]. Journal of Renewable and Sustainable Energy, 2015, 7(3): 033129. [58] 尚常花, 朱顺妮, 袁振宏, 等. 产油微藻油脂代谢调控[J]. 农业机械, 2011(5): 57-61. SHANG C H, ZHU S N, YUAN Z H, et al.Regulation of lipid metabolism in oleaginous microalgae[J]. Farm Machinery, 2011(5): 57-61.(in Chinese). [59] FERRERO E M, DE GODOS I, RODRÍGUEZ E M, et al. Molecular characterization of bacterial communities in algal: bacterial photobioreactors treating piggery wastewaters[J]. Ecological Engineering, 2012, 40: 121-130. [60] LUO L Z, LIN X A, ZENG F J, et al.Using co-occurrence network to explore the effects of bio-augmentation on the microalgae-based wastewater treatment process[J]. Biochemical Engineering Journal, 2019, 141: 10-18. [61] WANG Y, YANG Y, MA F, et al.Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content[J]. Letters in Applied Microbiology, 2015, 60(5): 497-503. [62] 杨翔梅. 细菌强化微藻生物系统对养猪废水厌氧消化液的处理研究[D]. 杭州: 浙江大学, 2018. YANG X M.Research on the treatment of digested piggery wastewater by bacteria strengthening microalgae biological system[D]. Hangzhou: Zhejiang University, 2018.(in Chinese with English abstract) [63] 皮永蕊, 吕永红, 柳莹, 等. 微藻-细菌共生体系在废水处理中的应用[J]. 微生物学报, 2019, 59(6): 1188-1196. PI Y R, LYU Y H, LIU Y, et al.Application of microalgae-bacteria symbiosis system in wastewater treatment[J]. Acta Microbiologica Sinica, 2019, 59(6): 1188-1196.(in Chinese with English abstract) |