Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (7): 1320-1328.DOI: 10.3969/j.issn.1004-1524.2021.07.18
• Biosystems Engineering • Previous Articles Next Articles
QIN Kuan1,2(), LIANG Xiaolong1, CAO Chengmao1,2,*(
), FANG Liangfei1, WU Zhengmin3,4, GE Jun1
Received:
2020-07-16
Online:
2021-07-25
Published:
2021-08-06
Contact:
CAO Chengmao
CLC Number:
QIN Kuan, LIANG Xiaolong, CAO Chengmao, FANG Liangfei, WU Zhengmin, GE Jun. Design and experiment of tea garden energy-saving ditching blade[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1320-1328.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.07.18
Fig.1 Energy saving ditch platform for tea garden 1, Rocker arm type guide and depth limiting device; 2, Retaining and diversion device; 3, Ditching blade; 4, Driving wheel; 5, Geared head; 6, Gasoline engine; 7, Walking device; 8, Chain box; 9, Belt transmission case.
项目 Project | 参数 Parameter | 项目 Project | 参数 Parameter |
---|---|---|---|
土槽长×宽×高 Soil trench length × width × height/mm×mm×mm | 10000×1000×400 | 铁剪切模量 Iron shear modulus (G3)/Pa | 8×1010 |
机具前进速度 Forward speed of the machine (Vm)/(m·s-1) | 0.9 | 土壤—土壤恢复系数 Soil-soil restoration coefficient (e1) | 0.7 |
开沟刀转速 Speed of ditching blade (nz)/(r·min-1) | 350 | 土壤—铁恢复系数 Soil-iron recovery coefficient(e2) | 0.6 |
土壤密度 Soil density (ρ1)/(kg·m-3) | 1600 | 土壤—土壤静摩擦因数 Soil-soil static friction coefficient (fs1) | 0.5 |
土壤泊松比 Soil Poisson’s ratio (γ1) | 0.32 | 土壤—铁静摩擦因数 Coefficient of soil-iron static friction (fs2) | 0.7 |
土壤剪切模量 Shear modulus of soil (G1)/Pa | 1×106 | 土壤—土壤滚动摩擦因数 Soil-soil rolling friction factor (fd1) | 0.55 |
铁密度 The density of iron (ρ3)/(kg·m-3) | 7830 | 土壤—铁滚动摩擦因数 Coefficient of soil-iron rolling friction (fd2) | 0.04 |
铁泊松比Iron Poisson’s ratio (γ3) | 0.4 |
Table 1 Simulation model parameters of energy saving ditching blade
项目 Project | 参数 Parameter | 项目 Project | 参数 Parameter |
---|---|---|---|
土槽长×宽×高 Soil trench length × width × height/mm×mm×mm | 10000×1000×400 | 铁剪切模量 Iron shear modulus (G3)/Pa | 8×1010 |
机具前进速度 Forward speed of the machine (Vm)/(m·s-1) | 0.9 | 土壤—土壤恢复系数 Soil-soil restoration coefficient (e1) | 0.7 |
开沟刀转速 Speed of ditching blade (nz)/(r·min-1) | 350 | 土壤—铁恢复系数 Soil-iron recovery coefficient(e2) | 0.6 |
土壤密度 Soil density (ρ1)/(kg·m-3) | 1600 | 土壤—土壤静摩擦因数 Soil-soil static friction coefficient (fs1) | 0.5 |
土壤泊松比 Soil Poisson’s ratio (γ1) | 0.32 | 土壤—铁静摩擦因数 Coefficient of soil-iron static friction (fs2) | 0.7 |
土壤剪切模量 Shear modulus of soil (G1)/Pa | 1×106 | 土壤—土壤滚动摩擦因数 Soil-soil rolling friction factor (fd1) | 0.55 |
铁密度 The density of iron (ρ3)/(kg·m-3) | 7830 | 土壤—铁滚动摩擦因数 Coefficient of soil-iron rolling friction (fd2) | 0.04 |
铁泊松比Iron Poisson’s ratio (γ3) | 0.4 |
平均开沟阻力Average trenching resistance (FZ)/N | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τs/° | τn/° | ||||||||||
50 | 51.5 | 53 | 54.5 | 56 | 57.5 | 59 | 60.5 | 62 | 63.5 | 65 | |
50 | 256.5 | 268.1 | 239.6 | 203.2 | 198.6 | 231.6 | 251.9 | 186.3 | 252.3 | 230.4 | 257.5 |
52 | 214.3 | 205.9 | 195.0 | 194.4 | 175.3 | 204.1 | 156.3 | 174.7 | 184.6 | 213.6 | 221.7 |
54 | 258.6 | 237.8 | 224.3 | 243.1 | 208.7 | 233.9 | 204.2 | 218.4 | 213.6 | 198.2 | 200.4 |
56 | 198.6 | 207.8 | 223.0 | 215.3 | 199.2 | 193.7 | 186.5 | 163.1 | 152.3 | 175.8 | 163.8 |
58 | 186.3 | 216.5 | 231.6 | 195.2 | 203.9 | 193.4 | 187.6 | 186.4 | 211.2 | 207.6 | 234.9 |
60 | 217.3 | 165.4 | 217.8 | 184.0 | 186.7 | 227.5 | 214.8 | 205.6 | 217.3 | 224.7 | 231.6 |
Table 2 The results of simulation experiment
平均开沟阻力Average trenching resistance (FZ)/N | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τs/° | τn/° | ||||||||||
50 | 51.5 | 53 | 54.5 | 56 | 57.5 | 59 | 60.5 | 62 | 63.5 | 65 | |
50 | 256.5 | 268.1 | 239.6 | 203.2 | 198.6 | 231.6 | 251.9 | 186.3 | 252.3 | 230.4 | 257.5 |
52 | 214.3 | 205.9 | 195.0 | 194.4 | 175.3 | 204.1 | 156.3 | 174.7 | 184.6 | 213.6 | 221.7 |
54 | 258.6 | 237.8 | 224.3 | 243.1 | 208.7 | 233.9 | 204.2 | 218.4 | 213.6 | 198.2 | 200.4 |
56 | 198.6 | 207.8 | 223.0 | 215.3 | 199.2 | 193.7 | 186.5 | 163.1 | 152.3 | 175.8 | 163.8 |
58 | 186.3 | 216.5 | 231.6 | 195.2 | 203.9 | 193.4 | 187.6 | 186.4 | 211.2 | 207.6 | 234.9 |
60 | 217.3 | 165.4 | 217.8 | 184.0 | 186.7 | 227.5 | 214.8 | 205.6 | 217.3 | 224.7 | 231.6 |
Fig.4 The experiment platform of ditching blade 1, Rack; 2, Power supply; 3, Forward drive motor; 4, Motor speed controller; 5, Gasoline engine; 6, Gearbox; 7, Chain drive; 8, Blade head mounting shaft; 9, Torque transducer; 10, Upper computer; 11, Ditch depth regulating device; 12, Road wheel; 13, Depth roller.
处理 Treatment | 开沟功耗 The power consumption of the ditch/kW | 沟深稳定性系数 Stability coefficient of ditch depth/% | ||||
---|---|---|---|---|---|---|
开沟深度 Trenching depth/cm | 开沟深度Trenching depth/cm | |||||
15 | 20 | 25 | 15 | 20 | 25 | |
茶园节能型开沟刀(试验组) | 0.093 | 0.107 | 0.128 | 91.2 | 92.8 | 91.7 |
Energy-saving ditching blade for tea garden(Experimental group) | ||||||
通用开沟刀(对照组) | 0.102 | 0.123 | 0.157 | 90.8 | 89.3 | 89.8 |
General ditching blade(Control group) |
Table 3 The results of field experiment
处理 Treatment | 开沟功耗 The power consumption of the ditch/kW | 沟深稳定性系数 Stability coefficient of ditch depth/% | ||||
---|---|---|---|---|---|---|
开沟深度 Trenching depth/cm | 开沟深度Trenching depth/cm | |||||
15 | 20 | 25 | 15 | 20 | 25 | |
茶园节能型开沟刀(试验组) | 0.093 | 0.107 | 0.128 | 91.2 | 92.8 | 91.7 |
Energy-saving ditching blade for tea garden(Experimental group) | ||||||
通用开沟刀(对照组) | 0.102 | 0.123 | 0.157 | 90.8 | 89.3 | 89.8 |
General ditching blade(Control group) |
[1] | 李为宁, 柏宣丙, 李兵. 滚筒式茶叶提香机结构参数优化[J]. 浙江农业学报, 2020, 32(2):348-358. |
LI W N, BAI X B, LI B. Optimization of structural parameters of drum type tea re-dryer[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):348-358.(in Chinese with English abstract) | |
[2] | 刘仲华. 中国茶叶深加工产业发展历程与趋势[J]. 茶叶科学, 2019, 39(2):115-122. |
LIU Z H. The development process and trend of Chinese tea comprehensive processing industry[J]. Journal of Tea Science, 2019, 39(2):115-122.(in Chinese with English abstract) | |
[3] | 肖宏儒, 韩余, 宋志禹, 等. 茶园机械化耕作技术[J]. 中国茶叶, 2018, 40(1):5-9. |
XIAO H R, HAN Y, SONG Z Y, et al. Mechanization farming technology of tea plantation[J]. China Tea, 2018, 40(1):5-9.(in Chinese) | |
[4] | 代红朝. 茶田翻耕机主要部件设计与试验研究[D]. 北京: 中国农业科学院, 2017. |
DAI H C. Design and experiment on the main parts of tea field tillage machine[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.(in Chinese with English abstract) | |
[5] | 韩余, 肖宏儒, 宋志禹, 等. 我国茶园机械化作业模式研究[J]. 中国农业科技导报, 2016, 18(3):74-81. |
HAN Y, XIAO H R, SONG Z Y, et al. Research on mechanization technology mode of tea plantation and management[J]. Journal of Agricultural Science and Technology, 2016, 18(3):74-81.(in Chinese with English abstract) | |
[6] | 刘大为, 谢方平, 叶强, 等. 1K-50型果园开沟机开沟部件功耗影响因素分析与试验[J]. 农业工程学报, 2019, 35(18):19-28. |
LIU D W, XIE F P, YE Q, et al. Analysis and experiment on influencing factors on power of ditching parts for 1K-50 orchard ditching[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18):19-28.(in Chinese with English abstract) | |
[7] | 康建明, 李树君, 杨学军, 等. 密植果园开沟施肥机开沟刀片设计与试验[J]. 农业机械学报, 2017, 48(2):68-74. |
KANG J M, LI S J, YANG X J, et al. Design and experiment of ditching blade installed in close planting orchard ditching machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):68-74.(in Chinese with English abstract) | |
[8] | 康建明, 李树君, 杨学军, 等. 正弦指数曲线型开沟刀片结构参数优化[J]. 农业机械学报, 2016, 47(11):91-99. |
KANG J M, LI S J, YANG X J, et al. Structure parameters optimization of sine exponential curve type ditching blade[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11):91-99.(in Chinese with English abstract) | |
[9] | 康建明, 李树君, 杨学军, 等. 基于多体动力学的圆盘式开沟机虚拟仿真与功耗测试[J]. 农业机械学报, 2017, 48(1):57-63. |
KANG J M, LI S J, YANG X J, et al. Virtual simulation and power test of disc type ditcher based on multi-body dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):57-63.(in Chinese with English abstract) | |
[10] |
TARVERDYAN A P, SARGSYAN S F, ALTUNYAN A V. Investigation results of kinematic and dynamic indicators of tiller with vertical rotation axis in orchards soil cultivation[J]. Annals of Agrarian Science, 2017, 15(2):163-168.
DOI URL |
[11] |
KAKAHY A N N, AHMAD D, AKHIR M D, et al. Effects of rotary mower blade cutting angles on the pulverization of sweet potato vine[J]. Agriculture and Agricultural Science Procedia, 2014, 2:95-101.
DOI URL |
[12] | 叶强, 谢方平, 孙松林, 等. 葡萄园反转双旋耕轮开沟机的研制[J]. 农业工程学报, 2013, 29(3):9-15. |
YE Q, XIE F P, SUN S L, et al. Development of vineyard ditcher with reversal twin rotary tillage wheels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3):9-15.(in Chinese with English abstract) | |
[13] | 农业部农业机械化管理司,农业部南京农业机械化研究所. 茶园机械化生产技术指导意见[J]. 农机科技推广, 2017(12):48-51. |
DEPARTMENT OF AGRICULTURAL MECHANIZATION MANAGEMENT, MINISTRY OF AGRICULTURE, NANJING INSTITUTE OF AGRICULTURAL MECHANIZATION, MINISTRY OF AGRICULTURE. Technical guidance on mechanized production of tea garden of Nanjing Institute of agricultural mechanization, Ministry of Agriculture[J].Agriculture Machinery Technology Extension, 2017(12):48-51.(in Chinese) | |
[14] | 丁为民, 王耀华, 彭嵩植. 反转旋耕刀滑切角分析与计算[J]. 农业机械学报, 2001, 32(6):26-29. |
DING W M, WANG Y H, PENG S Z. Calculation and analysis of grass removing angles of up-cut rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 2001, 32(6):26-29.(in Chinese with English abstract) | |
[15] | 丁为民, 彭嵩植. 旋耕刀正切刃设计方法的研究[J]. 农业机械学报, 1995, 26(4):56-61. |
DING W M, PENG S Z. Research on design of sidelong edge of rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 1995, 26(4):56-61.(in Chinese with English abstract) | |
[16] | 丁为民, 王耀华, 彭嵩植. 旋耕弯刀正切刃展开线的计算与模拟[J]. 农业工程学报, 2003, 19(4):104-106. |
DING W M, WANG Y H, PENG S Z. Calculation and simulation of expansion graph of sidelong edge for rotary blade[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4):104-106.(in Chinese with English abstract) | |
[17] | 丁为民, 王耀华, 彭嵩植. 反转旋耕刀正切面分析及参数选择[J]. 农业机械学报, 2004, 35(4):40-43. |
DING W M, WANG Y H, PENG S Z. Analysis on sidelong portion of a up-cut rotary blade[J]. Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(4):40-43.(in Chinese with English abstract) | |
[18] | 中国农业科学院茶叶研究所. 茶树栽培技术[M]. 北京: 农业出版社, 1982. |
[19] |
KATINAS E, KATINAS E, CHOTĚBORSKY R, LINDA M, et al. Wear modelling of soil ripper tine in sand and sandy clay by discrete element method[J]. Biosystems Engineering, 2019, 188:305-319.
DOI URL |
[20] | 陈红卫, 黄玲, 冯露, 等. 生物质炭基肥对农田土壤温室气体排放年际变化的影响[J]. 浙江农业学报, 2017, 29(6):977-981. |
CHEN H W, HUANG L, FENG L, et al. Effects of biochar based fertilizer on seasonal variation of greenhouse gas emissions[J]. Acta Agriculturae Zhejiangensis, 2017, 29(6):977-981.(in Chinese with English abstract) | |
[21] | 曾德超. 机械土壤动力学[M]. 北京: 北京科学技术出版社, 1995. |
[22] |
UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129:298-306.
DOI URL |
[23] | 方会敏, 姬长英, Ahmed Ali Tagar, 等. 秸秆-土壤-旋耕刀系统中秸秆位移仿真分析[J]. 农业机械学报, 2016, 47(1):60-67. |
FANG H M, JI C Y, TAGAR A, et al. Simulation analysis of straw movement in straw-soil-rotary blade system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):60-67.(in Chinese with English abstract) | |
[24] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 旋耕机 GB/T 5668—2017[S]. 北京: 中国标准出版社, 2017. |
[25] | 中华人民共和国工业和信息化部. 农用圆盘开沟机 JB/T 11908—2014[S]. 北京: 机械工业出版社, 2014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||