Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 428-436.DOI: 10.3969/j.issn.1004-1524.2022.03.02
• Crop Science • Previous Articles Next Articles
CHEN Qin1,2(), LIU Meijia1,2, LIU Diqiu1,2, QU Yuan1,2, CUI Xiuming1,2, GE Feng1,2,*(
)
Received:
2021-07-26
Online:
2022-03-25
Published:
2022-03-30
Contact:
GE Feng
CLC Number:
CHEN Qin, LIU Meijia, LIU Diqiu, QU Yuan, CUI Xiuming, GE Feng. Effects of synergy by double genes of PjFPS and Pjβ-AS on biosynthesis of Panax japonicus saponins[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 428-436.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.02
基因 | 上游引物Forward primer(5'→3') | 下游引物Reverse primer (5'→3') | 产物长度Product length/bp |
---|---|---|---|
Pjβ-AS | ATGTGGAGGCTAATGACAGCCAAGGG | TCAGACGCTTTTAGGTGGTAATCGAACA | 2 384 |
PjFPS | ACAGACAACAACTTCCCCTCCAT | AGAATGAGCGATCTGAAGACGAG | 1 136 |
nptⅡ | CTCTGATGCCGCCGTGTT | CCCTGATGCTCTTCGTCCA | 450 |
hptⅡ | GAAGTGCTTGACATTGGGGAAT | AGATGTTGGCGACCTCGTATT | 450 |
Table 1 Primers used for PCR
基因 | 上游引物Forward primer(5'→3') | 下游引物Reverse primer (5'→3') | 产物长度Product length/bp |
---|---|---|---|
Pjβ-AS | ATGTGGAGGCTAATGACAGCCAAGGG | TCAGACGCTTTTAGGTGGTAATCGAACA | 2 384 |
PjFPS | ACAGACAACAACTTCCCCTCCAT | AGAATGAGCGATCTGAAGACGAG | 1 136 |
nptⅡ | CTCTGATGCCGCCGTGTT | CCCTGATGCTCTTCGTCCA | 450 |
hptⅡ | GAAGTGCTTGACATTGGGGAAT | AGATGTTGGCGACCTCGTATT | 450 |
基因 | 上游引物Forward primer (5'→3') | 下游引物Reverse primer (5'→3') | 产物长度Product length/bp |
---|---|---|---|
Pjβ-AS | ATGTGGAGGCTAATGACAGCCAAGGG | TCAGACGCTTTTAGGTGGTAATCGAACA | 174 |
PjFPS | ACAGACAACAACTTCCCCTCCAT | AGAATGAGCGATCTGAAGACGAG | 168 |
18S RNA | AACCATAAACGATGCCGACCAG | TTCAGCCTTGCGACCATACTCC | 162 |
PjDS | TGGGAGTTTCAGCCCGATG | GGGGAGGTGTATAAAGTAAAGAGCC | 141 |
PjHMGR | GACATTTTGAACACCCTTGGACA | CTCTTAATTTTGATACACTGGCCGT | 172 |
PjSE | TAGGTGAACTTCTACAACCAGGAGG | CAACCAGAGATGTAACAGTCCCC | 178 |
PjSS | CGAGCACTTGACACTGTTGAGGAT | CTATTGCCTCCTGGTAACCGTTTC | 185 |
Table 2 Primers used for qRT-PCR
基因 | 上游引物Forward primer (5'→3') | 下游引物Reverse primer (5'→3') | 产物长度Product length/bp |
---|---|---|---|
Pjβ-AS | ATGTGGAGGCTAATGACAGCCAAGGG | TCAGACGCTTTTAGGTGGTAATCGAACA | 174 |
PjFPS | ACAGACAACAACTTCCCCTCCAT | AGAATGAGCGATCTGAAGACGAG | 168 |
18S RNA | AACCATAAACGATGCCGACCAG | TTCAGCCTTGCGACCATACTCC | 162 |
PjDS | TGGGAGTTTCAGCCCGATG | GGGGAGGTGTATAAAGTAAAGAGCC | 141 |
PjHMGR | GACATTTTGAACACCCTTGGACA | CTCTTAATTTTGATACACTGGCCGT | 172 |
PjSE | TAGGTGAACTTCTACAACCAGGAGG | CAACCAGAGATGTAACAGTCCCC | 178 |
PjSS | CGAGCACTTGACACTGTTGAGGAT | CTATTGCCTCCTGGTAACCGTTTC | 185 |
Fig.1 PCR analysis of nptⅡ and hpt Ⅱ in transgenic P. japonicus cells A, PCR result of nptⅡ; B, PCR result of hptⅡ; M, DL2000 DNA marker; 1, Cell lines of control; 2, Transgenic cell lines containing empty vector of hptⅡ gene; 3-6, PjFPS/β-AS-transgenic cells.
Fig.2 Relative expression levels of key enzyme genes inP. japonicus cells FPS, Farnesyl pyrophosphate synthase gene; SS, squalene synthase gene; β-AS, β-amyrin synthase gene; HMGR, 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene; SE, squalene cyclooxygenase gene; DS, damacendiol synthase gene. WT, wild-type cell line; T1, T2, T3 and T4, four PjFPS/β-AS overexpression cell lines; T5, trans-empty vector transgenic cell line. * and ** meant significant differences between control (non-transgenic cells) and transgenic cell lines at the level of P<0.05 andP<0.01. The same as below.
Fig.3 Activities of FPS and β-AS in P. japonicus cell lines WT, Wild-type cell line; F1, F2, F3 and F4, PjFPS transgenic cell lines; F5, Trans-empty vector cell lines.The same as below.
[1] | 王丽, 苏钛, 侯安国. 珠子参的化学成分及药理作用研究进展[J]. 中国中医基础医学杂志, 2020(7): 1037-1040. |
WANG L, SU T, HOU A G. Research progress on chemical constituents and pharmacological effects of Panax japonicus[J]. Journal of Basic Chinese Medicine, 2020(7): 1037-1040. (in Chinese with English abstract) | |
[2] |
KOCHKIN D V, KACHALA V V, SHASHKOV A S, et al. Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. Repens[J]. Phytochemistry, 2013, 93: 18-26.
DOI URL |
[3] |
QI L W, WANG C Z, YUAN C S. Ginsenosides from American ginseng: chemical and pharmacological diversity[J]. Phytochemistry, 2011, 72(8): 689-699.
DOI URL |
[4] | LUO H M, SUN C, SUN Y Z, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(Suppl 5): S5. |
[5] | 欧阳丽娜, 向大位, 吴雪, 等. 竹节参化学成分及药理活性研究进展[J]. 中草药, 2010, 41(6): 1023-1027. |
OUYANG L N, XIANG D W, WU X, et al. Research progress on the chemical constituents and pharmacological activities of Panax japonicus[J]. Acupuncture Research, 2010, 41(6): 1023-1027. (in Chinese) | |
[6] |
DENG B, ZHANG P, GE F, et al. Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes[J]. Biochemical Engineering Journal, 2017, 122: 38-46.
DOI URL |
[7] |
ZHANG D H, JIANG L X, LI N, et al. Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma Lingzhi[J]. Journal of Agricultural and Food Chemistry, 2017, 65(23): 4683-4690.
DOI URL |
[8] | 刘美佳, 于怡琳, 姜森, 等. 珠子参中法尼基焦磷酸合酶(FPS)对皂苷生物合成的影响研究[J]. 植物研究, 2018(4):611-618. |
LIU M J, YU Y L, JIANG S, et al. Effect of farnesyl-pyrophosphate synthase(FPS) on the biosynthesis of saponins in Panax japonicus[J]. Bulletin of Botanical Research, 2018(4):611-618. (in Chinese with English abstract) | |
[9] |
WANG J, LI Y, LIU D. Cloning and characterization of farnesyl diphosphate synthase gene involved in triterpenoids biosynthesis from Poriacocos[J]. International Journal of Molecular Sciences, 2014, 15(12): 22188-22202.
DOI URL |
[10] | 杨延, 张翔, 姜森, 等. 珠子参中皂苷成分及其药理活性研究进展[J]. 食品工业科技, 2019, 40(2): 347-356. |
YANG Y, ZHANG X, JIANG S, et al. Research progress on saponins and pharmacological activities of Panax japonicus[J]. Science and Technology of Food Industry, 2019, 40(2): 347-356. (in Chinese) | |
[11] |
HUANG Z W, LIN J C, CHENG Z X, et al. Production of oleanane-type sapogenin in transgenic rice via expression of β-amyrin synthase gene from Panax japonicus C. A. Mey[J]. BMC Biotechnology, 2015, 15: 45.
DOI URL |
[12] |
ZHAO C, XU T H, LIANG Y L, et al. Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference[J]. Plant Cell Reports, 2015, 34(8): 1307-1315.
DOI URL |
[13] |
DENG B, HUANG Z J, GE F, et al. An AP2/ERF family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng[J]. Journal of Plant Growth Regulation, 2017, 36(3): 691-701.
DOI URL |
[14] |
HOFGEN R, WILLMITZER L. Storage of competent cells for Agrobacterium transformation[J]. Nucleic Acids Research, 1988, 16(20): 9877.
DOI URL |
[15] |
ZHANG X, GE F, DENG B, et al. Molecular cloning and characterization of PnbHLH 1 transcription factor in Panax notoginseng[J]. Molecules (Basel, Switzerland), 2017, 22(8): 1268.
DOI URL |
[16] |
ABOUL-MAATY N A F, ORABY H A S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method[J]. Bulletin of the National Research Centre, 2019, 43: 25.
DOI URL |
[17] | 平洁, 梁赅, 汪晖, 等. 一种检测HMG-CoA还原酶活性的改良分光光度法及应用:CN102221531A[P]. 2011-10-19. |
[18] | 李敏. 珠子参化学成分及生物活性研究[D]. 长春: 吉林大学, 2017. |
LI M. Studies on the chemical constituents and bioactivities of Panacis majoris Rhizoma[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract) | |
[19] |
ZHANG S P, WANG G, ZUO T, et al. Comparative transcriptome analysis of rhizome nodes and internodes in Panax japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins[J]. Genomics, 2020, 112(2): 1112-1119.
DOI URL |
[20] |
TANG Q Y, CHEN G, SONG W L, et al. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides[J]. Planta, 2019, 249(2): 393-406.
DOI URL |
[21] | 陈勤, 雷君, 刘迪秋, 等. 人参属三萜皂苷骨架修饰的研究进展[J]. 中药材, 2020, 43(11): 2830-2836. |
CHEN Q, LEI J, LIU D Q, et al. The research progress of ginseng triterpenoid saponin skeleton modifying enzyme[J]. Journal of Chinese Medicinal Materials, 2020, 43(11): 2830-2836. (in Chinese) | |
[22] |
YANG Y, GE F, SUN Y, et al. Strengthening triterpene saponins biosynthesis by over-expression of farnesyl pyrophosphate synthase gene and RNA interference of cycloartenol synthase gene in Panax notoginseng cells[J]. Molecules (Basel, Switzerland), 2017, 22(4): 581.
DOI URL |
[23] |
KIM Y K, KIM Y B, UDDIN M R, et al. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase[J]. ACS Synthetic Biology, 2014, 3(10): 773-779.
DOI URL |
[24] | LIU Y, CHEN H H, WEN H, et al. Enhancing the accumulation of beta-amyrin in Saccharomyces cerevisiae by co-expression of Glycyrrhiza uralensis squalene synthase 1 and beta-amyrin synthase genes[J]. Acta Pharmaceutica Sinica, 2014, 49(5): 734-741. |
[25] |
LU J, LI J X, WANG S H, et al. Advances in ginsenoside biosynthesis and metabolic regulation[J]. Biotechnology and Applied Biochemistry, 2018, 65(4): 514-522.
DOI URL |
[26] |
ZHAO C, XU T H, LIANG Y L, et al. Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference[J]. Plant Cell Reports, 2015, 34(8): 1307-1315.
DOI URL |
[1] | WANG Ling-ping;ZHOU Sheng-mao;*;DAI Dan-li;CAO Jia-shu. Progress in plant phenolic compounds [J]. , 2010, 22(5): 696-701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||