Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 1976-984.DOI: 10.3969/j.issn.1004-1524.2022.09.16
• Plant protection • Previous Articles Next Articles
XU Lia(), WANG Qib, DING Tingb, JIANG Tengc,*(
)
Received:
2021-06-07
Online:
2022-09-25
Published:
2022-09-30
Contact:
JIANG Teng
CLC Number:
XU Li, WANG Qi, DING Ting, JIANG Teng. Cloning of GRMZM2G455909 gene from maize and its functional analysis in transgenic plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1976-984.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.16
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
AtActin2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCT TGC |
AtTUB4 | CGAAAACGCTGACGAGTGTA | CCTTGGGAATGGGATAAGGT |
GRMZM2G455909 | CGACGAATGAGGCTCCTAGT | CTTGTCCAGCTCATTGTCGG |
Table 1 Primers sequences used in qRT-PCR
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
AtActin2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCT TGC |
AtTUB4 | CGAAAACGCTGACGAGTGTA | CCTTGGGAATGGGATAAGGT |
GRMZM2G455909 | CGACGAATGAGGCTCCTAGT | CTTGTCCAGCTCATTGTCGG |
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
PR1 | ACACGTGCAATGGAGTTTGT | TGCAACTGATTATGGTTCCA |
LOX | AGGAGTTTGGACGGGAGATT | CCGTACTTGCTCGGGTCA |
EFR1 | CCTTCCGAT CAA ATC CGT AAG | TCCCGAGCC AAA CCC TAA TAC |
NPR1 | AACGATTCTTCCCGCGCTGTTC | TTCTCCGCAAGCCAGTTGAGTC |
AtActin2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCT TGC |
AtTUB4 | CGAAAACGCTGACGAGTGTA | CCTTGGGAATGGGATAAGGT |
Table 2 The primers sequences of disease resistance related genes
基因 Gene | 上游引物序列 Forward primer sequences(5'→3') | 下游引物序列 Reverse primer sequences(5'→3') |
---|---|---|
PR1 | ACACGTGCAATGGAGTTTGT | TGCAACTGATTATGGTTCCA |
LOX | AGGAGTTTGGACGGGAGATT | CCGTACTTGCTCGGGTCA |
EFR1 | CCTTCCGAT CAA ATC CGT AAG | TCCCGAGCC AAA CCC TAA TAC |
NPR1 | AACGATTCTTCCCGCGCTGTTC | TTCTCCGCAAGCCAGTTGAGTC |
AtActin2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCT TGC |
AtTUB4 | CGAAAACGCTGACGAGTGTA | CCTTGGGAATGGGATAAGGT |
Fig.3 Electrophoresis result of GRMZM2G455909 gene by PCR amplification(A) and gene-Blunt Simple by double enzyme digestion(B) M1 was DL5000 DNA marker; 1, 2 were both genes;CK was pEASY-Blunt Simple Cloning vector; 3 was the digestion result of transgenic plants.
Fig.5 Verification of transgenic Arabidopsis thaliana positive plants with GRMZM2G455909 gene by qRT-PCR WT, Wild Arabidopsis thaliana plant ; L2,L9,Transgenic Arabidopsis plants; Different lowercase letters indicated that the difference of relative expression at 5% level was obvious.
Fig.6 Incidence of transgenic Arabidopsis thaliana plants after inoculated with Pst DC3000 A was the phenotype at the 6 d; B was the disease index at different times. WT, Wild Arabidopsis thaliana plant ; L2,L9,Transgenic Arabidopsis plants.In B, different lowercase letters indicated that the difference of disease index at 5% level was obvious in different treatments on the same day.
处理 Treatments | 时间 t/d | 细菌数 Number of bacterium/(105 CFU·g-1) |
---|---|---|
WT | 2 | 1.13 c |
4 | 11.23 a | |
6 | 7.27 b | |
L2 | 2 | 0.57 c |
4 | 6.82 a | |
6 | 1.58 b | |
L9 | 2 | 0.24 c |
4 | 3.22 a | |
6 | 1.28 b |
Table 3 Number of bacterium in leaves from transgenic Arabidopsis thaliana plants after inoculation with Pst DC3000
处理 Treatments | 时间 t/d | 细菌数 Number of bacterium/(105 CFU·g-1) |
---|---|---|
WT | 2 | 1.13 c |
4 | 11.23 a | |
6 | 7.27 b | |
L2 | 2 | 0.57 c |
4 | 6.82 a | |
6 | 1.58 b | |
L9 | 2 | 0.24 c |
4 | 3.22 a | |
6 | 1.28 b |
Fig.7 Expression analysis of disease resistance related genes for transgenic Arabidopsis thaliana plants WT, Wild Arabidopsis thaliana plant ; L2 and L9,Transgenic Arabidopsis plants. Different lowercase letters indicated that the difference of relative expression at 5% level was obvious on the same gene from different treatments.
[1] | 高花雨, 何琪, 贾劲松, 等. 小麦抗条锈基因Yr10的抗病通路研究[J]. 麦类作物学报, 2021, 41(3): 287-294. |
GAO H Y, HE Q, JIA J S, et al. Resistance pathway of wheat stripe rust resistance gene Yr10[J]. Journal of Triticeae Crops, 2021, 41(3): 287-294. (in Chinese with English abstract) | |
[2] |
WANG X D, BI W S, GAO J, et al. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley[J]. Journal of Integrative Agriculture, 2018, 17(11): 2468-2477.
DOI URL |
[3] | GAO J, BI W S, LI H P, et al. WRKY transcription factors associated with NPR1-mediated acquired resistance in barley are potential resources to improve wheat resistance to Puccinia triticina[J]. Frontiers in Plant Science, 2018(9): 1486. |
[4] | 孙黄兵, 钟年孝, 孔令茹, 等. 杜仲内生细菌DZSY21诱导玉米抗小斑病的系统抗性研究[J]. 生物学杂志, 2018, 35(5): 49-53. |
SUN H B, ZHONG N X, KONG L R, et al. Research on maize system resistance triggered by the endophytic bacterium DZSY21[J]. Journal of Biology, 2018, 35(5): 49-53. (in Chinese with English abstract) | |
[5] | DING T, SU B, CHEN X J, et al. An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight[J]. Frontiers in Microbiology, 2017(8): 903. |
[6] |
王其, 陈小洁, 顾双月, 等. 杜仲内生拮抗细菌DZSY21诱导玉米抗病基因表达变化的转录组学研究[J]. 浙江农业学报, 2019, 31(3): 345-354.
DOI |
WANG Q, CHEN X J, GU S Y, et al. Transcriptome profiling of maize resistance gene in response to DZSY21 induction[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3): 345-354. (in Chinese with English abstract)
DOI |
|
[7] |
SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
DOI PMID |
[8] |
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2014, 31(8): 1296-1297.
DOI URL |
[9] |
KATOH K, MISAWA K, KUMA K I, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066.
PMID |
[10] |
NIU D D, LIU H X, JIANG C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions: MPMI, 2011, 24(5): 533-542.
DOI URL |
[11] | 曾海红. 壳寡糖诱导拟南芥对Pseudomonas syringae pv tomato DC3000的抗性及其抗性机制的初步研究[D]. 大连: 大连海洋大学, 2016. |
ZENG H H. The primary study of the mechanism of the oligosaccharidesinduced resistance to Pseudomonas syringae pv.tomato DC3000 in Arabidopsis thaliana[D]. Dalian: Dalian Ocean University, 2016. (in Chinese with English abstract) | |
[12] | 刘俊杰, 贾晓晨, 赵小明, 等. SPINDLY在壳寡糖诱导拟南芥抗丁香假单胞菌中的功能[J]. 西北植物学报, 2020, 40(5): 766-772. |
LIU J J, JIA X C, ZHAO X M, et al. Function of SPINDLY in chitosan oligosaccharide induced resistance to pst DC3000 in Arabidopsis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 766-772. (in Chinese with English abstract) | |
[13] |
LIU J L, LIU X L, DAI L Y, et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants[J]. Journal of Genetics and Genomics, 2007, 34(9): 765-776.
PMID |
[14] | 王友红, 张鹏飞, 陈建群. 植物抗病基因及其作用机理[J]. 植物学通报, 2005, 40(1): 92-99. |
WANG Y H, ZHANG P F, CHEN J Q. Disease resistance genes and mechanisms in plants[J]. Chinese Bulletin of Botany, 2005, 40(1): 92-99. (in Chinese with English abstract) | |
[15] | LEAH M, XIAOPING T, PATRICE K, et al. Plant NBS-LRR protein: adaptable guards[J]. Genome Biology, 2006, 7: 212-223. |
[16] | 姜峰. 拮抗酵母诱导番茄果实抗性基因的分离与功能鉴定[D]. 杭州: 浙江大学, 2008. |
JIANG F. Identication and characterization of differentially expressed genes from cherry tomato fruit after application of the biological control yeast Cryptococcus laurentii[D]. Hangzhou: Zhejiang University, 2008. (in Chinese with English abstract) | |
[17] | 张颖, 王长春, 胡海涛, 等. 水稻白叶枯病候选抗性基因SHNLR的RGAs克隆及分析[J]. 生物技术通报, 2012(4): 51-57. |
ZHANG Y, WANG C C, HU H T, et al. RGAs cloning and analysis of a candidate resistance gene SHNLR to rice bacterial blight[J]. Biotechnology Bulletin, 2012(4): 51-57. (in Chinese with English abstract) | |
[18] | 丁玉梅. 黑籽南瓜对枯萎病菌侵染的应答机制及NBS类抗病基因筛选[D]. 重庆: 西南大学, 2019. |
DING Y M. The response mechanism of Cucurbita ficifolia infected by Fusarium oxysporum f.sp. cucumerinum and selecting of NBS type disease-resistance genes[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract) | |
[19] |
PARKER J E, COLEMAN M J, SZABÒ V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6[J]. The Plant Cell, 1997, 9(6): 879-894.
DOI URL |
[20] |
BENT A F, KUNKEL B N, DAHLBECK D, et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes[J]. Science, 1994, 265(5180): 1856-1860.
DOI URL |
[21] |
SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243): 1804-1806.
DOI PMID |
[22] | DINESH-KUMAR S P, WHITHAM S, CHOI D, et al. Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4175-4180. |
[23] |
JONES D A, THOMAS C M, HAMMOND-KOSACK K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science, 1994, 266(5186): 789-793.
DOI URL |
[24] | 李宁. 抗小麦黄矮病候选基因的克隆、特性分析及病原诱导启动子的分离[D]. 济南: 山东师范大学, 2008. |
LI N. Cloning and characterization of candidate genes for resistance to wheat yellow dwarf disease and isolation of promoter induced by pathogen[D]. Jinan: Shandong Normal University, 2008. (in Chinese with English abstract) | |
[25] | 王惠梅. 菰遗传多样性与ZlBBR1基因的功能分析[D]. 北京: 中国农业科学院, 2017. |
WANG H M. Genetic diversity of Zizania latifolia griseb(Turcz) and functional analysis of ZlBBR1[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
[26] | 马世伟. 水稻抗稻瘟病新基因的功能分析和Gα参与抗稻瘟病机理研究[D]. 福州: 福建农林大学, 2019. |
MA S W. Functional analysis on two novel blast-resistant genes in rice(Oryza sativa L.) and Gα participating in blast fungus infection[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese with English abstract) | |
[27] |
KRUSE T, TALLMAN G, ZEIGER E. Isolation of guard cell protoplasts from mechanically prepared epidermis of Vicia faba leaves[J]. Plant Physiology, 1989, 90(4): 1382-1386.
DOI URL |
[28] | 张晓英. 水杨酸信号途径在B型烟粉虱诱导烟草对烟蚜防御反应中的作用[D]. 泰安: 山东农业大学, 2012. |
ZHANG X Y. The role of salicylic acid pathway induced by Bemisia tabaci B-biotype in tobacco defense Myzus persicae[D]. Tai’an: Shandong Agricultural University, 2012. (in Chinese with English abstract) | |
[29] | 周明琦, 吴丽华, 沈忱, 等. ABA、MeJA和SA诱导下的荠菜CBF途径冷响应相关基因表达调控研究[J]. 中国农业科技导报, 2010, 12(6): 75-80. |
ZHOU M Q, WU L H, SHEN C, et al. Regulation of cold-responsive genes in CBF signaling pathway from Capsella Bursa induced by ABA, MeJA and SA[J]. Journal of Agricultural Science and Technology, 2010, 12(6): 75-80. (in Chinese with English abstract) | |
[30] | 景岚, 李凌欣, 裴旭, 等. 寡糖诱导向日葵抗锈病的信号转导途径[J]. 中国油料作物学报, 2012, 34(5): 523-527. |
JING L, LI L X, PEI X, et al. Oligosaccharide-induced signal transduction pathway of rust disease resistance in sunflower[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(5): 523-527. (in Chinese with English abstract) |
[1] | GUO Lina, ZHAO Huiting, REN Youshe, XU Bing, JIANG Yusuo. Construction of insect expression vector pIB/V5-His of AcerOr2 in Apis cerana cerana [J]. , 2020, 32(6): 994-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||