Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2504-2511.DOI: 10.3969/j.issn.1004-1524.2022.11.19
• Food Science • Previous Articles Next Articles
LIN Yuqing1,2(), LU Shengmin2, ZHOU Wanyi2, XING Jianrong2, YANG Ying2,*(
)
Received:
2022-03-28
Online:
2022-11-25
Published:
2022-11-29
Contact:
YANG Ying
CLC Number:
LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.11.19
名称 Name | 保留时间 Retention time/min | 数均分子量 Number-average molecular weight | 重均分子量 Weight-average molecular weight | 峰位分子量 Peak molecular weight |
---|---|---|---|---|
DOP1 | 15.22 | 7.16×104 | 2.56×105 | 1.77×105 |
DOP2 | 16.44 | 4.14×104 | 1.35×105 | 4.56×104 |
DOP3 | 15.61 | 8.74×104 | 3.26×105 | 1.14×105 |
Table 1 Molecular weight of three polysaccharides from Dendrobium varieties leaves
名称 Name | 保留时间 Retention time/min | 数均分子量 Number-average molecular weight | 重均分子量 Weight-average molecular weight | 峰位分子量 Peak molecular weight |
---|---|---|---|---|
DOP1 | 15.22 | 7.16×104 | 2.56×105 | 1.77×105 |
DOP2 | 16.44 | 4.14×104 | 1.35×105 | 4.56×104 |
DOP3 | 15.61 | 8.74×104 | 3.26×105 | 1.14×105 |
名称 Name | 葡萄糖 Glucose | 甘露糖 Mannose | 半乳糖 Galactose | 阿拉伯糖 Arabinose |
---|---|---|---|---|
DOP1 | 252 | 210 | 1 | 0.78 |
DOP2 | 370 | 245 | 1 | 0.87 |
DOP3 | 278 | 169 | 1 | 0.90 |
Table 2 Monosaccharides molar ratio of three polysaccharides
名称 Name | 葡萄糖 Glucose | 甘露糖 Mannose | 半乳糖 Galactose | 阿拉伯糖 Arabinose |
---|---|---|---|---|
DOP1 | 252 | 210 | 1 | 0.78 |
DOP2 | 370 | 245 | 1 | 0.87 |
DOP3 | 278 | 169 | 1 | 0.90 |
碳源 Carbon source | 菌落总数 Total viable count | |||
---|---|---|---|---|
植物乳杆菌 Lactobacillus plantarum | 戊糖乳杆菌 Lactobacillus pentosus | 干酪乳杆菌 Lactobacillus casei | 鼠李糖乳杆菌 Lactobacillus rhamnosus | |
Glu(CK) | 1.8±0.6 b | 12.9±1.2 b | 6.4±0.4 b | 1.3±0.1 de |
DOP1 | 3.2±0.5 b | 7.0±1.2 c | 2.3±0.5 d | 1.2±0.1 de |
DOP2 | 3.3±0.2 b | 4.6±0.8 d | 3.5±0.4 d | 2.9±0.8 bc |
DOP3 | 2.8.±6.0 b | 6.1±1.4 cd | 2.7±0.3 d | 1.1±0.1 e |
Glu+DOP1 | 2.7±0.6 b | 13.0±1.4 b | 9.1±1.2 a | 2.9±0.5 ab |
Glu+DOP2 | 3.9±0.3 b | 15.8±4.7 b | 7.4±1.1 b | 3.2±0.7 a |
Glu+DOP3 | 14.9±0.4 a | 18.7±0.9 a | 6.7±0.5 b | 2.0±0.1 cd |
Table 3 Effects of three polysaccharides on growth of common used probiotics ×107 CFU·mL-1
碳源 Carbon source | 菌落总数 Total viable count | |||
---|---|---|---|---|
植物乳杆菌 Lactobacillus plantarum | 戊糖乳杆菌 Lactobacillus pentosus | 干酪乳杆菌 Lactobacillus casei | 鼠李糖乳杆菌 Lactobacillus rhamnosus | |
Glu(CK) | 1.8±0.6 b | 12.9±1.2 b | 6.4±0.4 b | 1.3±0.1 de |
DOP1 | 3.2±0.5 b | 7.0±1.2 c | 2.3±0.5 d | 1.2±0.1 de |
DOP2 | 3.3±0.2 b | 4.6±0.8 d | 3.5±0.4 d | 2.9±0.8 bc |
DOP3 | 2.8.±6.0 b | 6.1±1.4 cd | 2.7±0.3 d | 1.1±0.1 e |
Glu+DOP1 | 2.7±0.6 b | 13.0±1.4 b | 9.1±1.2 a | 2.9±0.5 ab |
Glu+DOP2 | 3.9±0.3 b | 15.8±4.7 b | 7.4±1.1 b | 3.2±0.7 a |
Glu+DOP3 | 14.9±0.4 a | 18.7±0.9 a | 6.7±0.5 b | 2.0±0.1 cd |
碳源 Carbon source | 菌落总数 Total viable count | ||
---|---|---|---|
大肠埃希菌 Escherichia coli | 金黄色葡萄球菌 Staphylococcus aureus | 单增李斯特菌 Listeria monocytogenes | |
Glu(CK) | 6.5±0.7 a | 2.8±0.1 a | 10.0±0.9 a |
DOP1 | 5.4±0.6 a | 3.0±0.1 a | 8.0±0.4 b |
DOP2 | 3.2±0.6 b | 3.5±0.5 a | 7.0±0.1 b |
DOP3 | 1.6±0.2 c | 3.8±0.8 a | 6.6±0.8 b |
Table 4 Effects of three polysaccharides on growth of common pathogenic bacteria ×108 CFU·mL-1
碳源 Carbon source | 菌落总数 Total viable count | ||
---|---|---|---|
大肠埃希菌 Escherichia coli | 金黄色葡萄球菌 Staphylococcus aureus | 单增李斯特菌 Listeria monocytogenes | |
Glu(CK) | 6.5±0.7 a | 2.8±0.1 a | 10.0±0.9 a |
DOP1 | 5.4±0.6 a | 3.0±0.1 a | 8.0±0.4 b |
DOP2 | 3.2±0.6 b | 3.5±0.5 a | 7.0±0.1 b |
DOP3 | 1.6±0.2 c | 3.8±0.8 a | 6.6±0.8 b |
[1] | 孙卓然, 刘圆, 李晓云, 等. 石斛不同种、不同药用部位中多糖含量测定[J]. 时珍国医国药, 2009, 20(8): 1886-1888. |
SUN Z R, LIU Y, LI X Y, et al. The determination of polysaccharides from several herba dendrobii and different medical parts of D. nobile Lindl, D. fimbriatum Hook, D. denneanum Kerr and D. chrysotoxum Lindl[J]. Lishizhen Medicine and Materia Medica Research, 2009, 20(8): 1886-1888. (in Chinese with English abstract) | |
[2] | 张又元, 陈乃伟, 丁重阳, 等. 铁皮石斛茎部和叶部多糖的性质和活性[J]. 食品与生物技术学报, 2017, 36(9): 959-965. |
ZHANG Y Y, CHEN N W, DING C Y, et al. Characterization and bioactivity analysis of Dendrobium officinale stem and leaf polysacchride[J]. Journal of Food Science and Biotechnology, 2017, 36(9): 959-965. (in Chinese with English abstract) | |
[3] | 鲍素华, 查学强, 郝杰, 等. 不同分子量铁皮石斛多糖体外抗氧化活性研究[J]. 食品科学, 2009, 30(21): 123-127. |
BAO S H, ZHA X Q, HAO J, et al. In vitro antioxidant activity of polysaccharides with different molecular weights from Dendrobium candidum[J]. Food Science, 2009, 30(21): 123-127. (in Chinese with English abstract) | |
[4] |
LI Z, NIE K, WANG Z, et al. Quantitative structure activity relationship models for the antioxidant activity of polysaccharides[J]. PLoS One, 2016, 11(9): e0163536.
DOI URL |
[5] |
CANFORA E E, MEEX R C R, VENEMA K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nature Reviews Endocrinology, 2019, 15(5): 261-273.
DOI PMID |
[6] | RYU S T, PARK B S, BANG H T, et al. Effects of anti-heat diet and inverse lighting on growth performance, immune organ, microorganism and short chain fatty acids of broiler chickens under heat stress[J]. Journal of Environmental Biology, 2016, 37(2): 185-192. |
[7] |
ROOKS M G, GARRETT W S. Gut microbiota, metabolites and host immunity[J]. Nature Reviews Immunology, 2016, 16(6): 341-352.
DOI PMID |
[8] | 邱现创, 赵宁, 李晨, 等. 铁皮石斛多糖提取工艺优化及对果蝇抗氧化能力的影响[J]. 食品科学, 2018, 39(2): 273-280. |
QIU X C, ZHAO N, LI C, et al. Optimization of extraction of polysaccharide from Dendrobium officinale and its antioxidant effect on Drosophila melanogaster[J]. Food Science, 2018, 39(2): 273-280. (in Chinese with English abstract) | |
[9] | 焦宇知, 汪艳芝, 朱云, 等. 茶籽粕多糖的提纯及单糖组成分析[J]. 食品研究与开发, 2016, 37(22): 51-55. |
JIAO Y Z, WANG Y Z, ZHU Y, et al. Studies on purification of polysaccharides from oil-tea-cake and monosaccharides’ composition[J]. Food Research and Development, 2016, 37(22): 51-55. (in Chinese with English abstract) | |
[10] | 刘卫宝. 黄芪多糖、寡糖的制备及其发酵益生作用的研究[D]. 无锡: 江南大学, 2020. |
LIU W B. Study on preparation of Astragalus polysaccharides and oligosaccharides and their probiotic effects[D]. Wuxi: Jiangnan University, 2020. (in Chinese with English abstract) | |
[11] |
WICHIENCHOT S, JATUPORNPIPAT M, RASTALL R A. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties[J]. Food Chemistry, 2010, 120(3): 850-857.
DOI URL |
[12] |
ZHENG Y, XIANG S, ZHANG H, et al. Vitamin B12 enriched in spinach and its effects on gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2021, 69(7): 2204-2212.
DOI PMID |
[13] | 陈军奎, 刘伟, 王欣, 等. 成年人不同阶段肠道菌群及其代谢差异的研究[J]. 胃肠病学和肝病学杂志, 2019, 28(3): 276-281. |
CHEN J K, LIU W, WANG X, et al. Study on intestinal flora and metabolic differences in adults at different stages[J]. Chinese Journal of Gastroenterology and Hepatology, 2019, 28(3): 276-281. (in Chinese with English abstract) | |
[14] | 唐靖雯, 卢礼平, 王欢, 等. 铁皮石斛叶的研究进展[J]. 中国民族民间医药, 2020, 29(7): 63-67. |
TANG J W, LU L P, WANG H, et al. Research progress in leaves of Dendrobium officinale Kimura et Migo[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2020, 29(7): 63-67. (in Chinese with English abstract) | |
[15] | 王轶帆, 邓媛元, 张雁, 等. 龙眼多糖与燕麦多糖的结构特征及其益生活性比较[J]. 中国食品学报, 2020, 20(12): 62-71. |
WANG Y F, DENG Y Y, ZHANG Y, et al. Comparison of structure characteristics and probiotic activity of Longan polysaccharides and oat polysaccharides[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 62-71. (in Chinese with English abstract) | |
[16] |
CLARKE S F, MURPHY E F, O'SULLIVAN O, et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920.
DOI PMID |
[17] | 欧阳建, 李秀平, 周方, 等. ‘平阳黄汤’对高脂饮食大鼠肠道屏障和肠道菌群的影响[J]. 食品科学, 2021, 42(23): 170-181. |
OUYANG J, LI X P, ZHOU F, et al. Effect of Pingyang yellow tea on intestinal barrier and intestinal flora in rats fed high-fat diet[J]. Food Science, 2021, 42(23): 170-181. (in Chinese with English abstract) | |
[18] |
WANG K, LIAO M F, ZHOU N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Reports, 2019, 26(1): 222-235.e5.
DOI URL |
[19] |
MUÑIZ PEDROGO D A, JENSEN M D, VAN DYKE C T, et al. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet[J]. Mayo Clinic Proceedings, 2018, 93(8): 1104-1110.
DOI PMID |
[20] | MALDONADO-ARRIAGA B, SANDOVAL-JIMÉNEZ S, ROD-RÍGUEZ-SILVERIO J, et al. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis[J]. MicrobiologyOpen, 2021, 10(2): e1181. |
[21] | 武爱荣, 杨乐. VITEK-2 Compact检测奇异变形杆菌、摩根摩根菌、铜绿假单胞菌的部分药敏结果准确性评价[J]. 现代检验医学杂志, 2020, 35(6): 106-110. |
WU A R, YANG L. Accuracy evaluation of partial drug sensitivity results of VITEK-2 Compact detection for Proteus singularis, morgan morgan and Pseudomonas aeruginosa[J]. Journal of Modern Laboratory Medicine, 2020, 35(6): 106-110. (in Chinese with English abstract) | |
[22] | MORTENSEN P B, CLAUSEN M R. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease[J]. Scandinavian Journal of Gastroenterology, 1996, 31(Suppl 216): 132-148. |
[23] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
DOI URL |
[24] |
AGUILERA A, SELGAS R, DIÉZ J J, et al. Anorexia in end-stage renal disease: pathophysiology and treatment[J]. Expert Opinion on Pharmacotherapy, 2001, 2(11): 1825-1838.
PMID |
[25] |
WU D T, NIE X R, GAN R Y, et al. In vitro digestion and fecal fermentation behaviors of a pectic polysaccharide from okra (Abelmoschus esculentus) and its impacts on human gut microbiota[J]. Food Hydrocolloids, 2021, 114: 106577.
DOI URL |
[26] |
DO PRADO S B R, MINGUZZI B T, HOFFMANN C, et al. Modulation of human gut microbiota by dietary fibers from unripe and ripe papayas: distinct polysaccharide degradation using a colonic in vitro fermentation model[J]. Food Chemistry, 2021, 348: 129071.
DOI URL |
[27] |
CANFORA E E, JOCKEN J W, BLAAK E E. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nature Reviews Endocrinology, 2015, 11(10): 577-591.
DOI PMID |
[28] | WU J, LIU Y, DOU Z, et al. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice[J]. Food & Function, 2020, 11(11): 9585-9598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||