[1] |
SUNG K T, AE P K, SUN L, et al. Application of bimodal histogram method to oil spill detection from a satellite synthetic aperture radar image[J]. Korean Journal of Remote Sensing, 2013, 29(6): 645-655.
|
[2] |
李亚丽, 张松林, 韩杰. 基于小波系数分割的局部自适应阈值图像去噪[J]. 测绘通报, 2020(5): 43-46.
|
|
LI Y L, ZHANG S L, HAN J. Wavelet coefficients segmentation for locally adaptive threshold image denoising method[J]. Bulletin of Surveying and Mapping, 2020(5): 43-46. (in Chinese with English abstract)
|
[3] |
黄林彩, 王智文, 符晓彪, 等. 手势图像边缘检测: 基于多方向和最佳阈值的Canny算法[J]. 广西科技大学学报, 2022, 33(1): 71-77.
|
|
HUANG L C, WANG Z W, FU X B, et al. An improved canny algorithm based on multi-directional and optimal threshold for gesture image edge detection[J]. Journal of Guangxi University of Science and Technology, 2022, 33(1): 71-77. (in Chinese with English abstract)
|
[4] |
SEMMA A, HANNAD Y, SIDDIQI I, et al. Writer identification using deep learning with FAST keypoints and Harris corner detector[J]. Expert Systems With Applications, 2021, 184: 115473.
|
[5] |
孙东辉, 鞠秀亮, 冯登超, 等. 基于FAST检测器和SURF描述子的聚合图像人脸识别[J]. 国外电子测量技术, 2016, 35(1): 94-98.
|
|
SUN D H, JU X L, FENG D C, et al. Aggregated image face recognition based on FAST detector and SURF descriptor[J]. Foreign Electronic Measurement Technology, 2016, 35(1): 94-98. (in Chinese with English abstract)
|
[6] |
王中元, 胡瑞敏, 章凯. 区域分割或连通分量标记分裂-合并法的一种实现[J]. 小型微型计算机系统, 2004, 25(9):1648-1651.
|
|
WANG Z Y, HU R M, ZHANG K. Realization of split-merge algorithm in image segmentation or components labeling[J]. Mini-Micro Systems, 2004, 25(9):1648-1651. (in Chinese with English abstract)
|
[7] |
BOYKOV Y Y, JOLLY M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[C]// Eighth IEEE International Conference on Computer Vision. ICCV. July 7-14, 2001, Vancouver, BC, Canada. IEEE, 2002: 105-112.
|
[8] |
梁计锋. 基于Snake改进型模型的胸部CT图像分割方法[J]. 自动化与仪器仪表, 2022(6): 23-26.
|
|
LIANG J F. A segmentation method of thoracic CT images based on Snake improved model[J]. Automation & Instrumentation, 2022(6): 23-26. (in Chinese with English abstract)
|
[9] |
BEN SLAMA A, MBARKI Z, SEDDIK H, et al. Improving parotid gland tumor segmentation and classification using geometric active contour model and deep neural network framework[J]. TS, 2021, 38(4): 955-965.
|
[10] |
何希平, 刘波. 深度学习理论与实践[M]. 北京: 科学出版社, 2017.
|
[11] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[EB/OL]. (2016-05-20) [2022-12-06]. https://arxiv.org/abs/1605.06211.
|
[12] |
赵兵, 冯全. 基于全卷积网络的葡萄病害叶片分割[J]. 南京农业大学学报, 2018, 41(4): 752-759.
|
|
ZHAO B, FENG Q. Segmentation of grape diseases leaf based on full convolution network[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 752-759. (in Chinese with English abstract)
|
[13] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
[14] |
王振, 张善文, 赵保平. 基于级联卷积神经网络的作物病害叶片分割[J]. 计算机工程与应用, 2020, 56(15): 242-250.
|
|
WANG Z, ZHANG S W, ZHAO B P. Crop diseases leaf segmentation method based on cascade convolutional neural network[J]. Computer Engineering and Applications, 2020, 56(15): 242-250. (in Chinese with English abstract)
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
[16] |
赵小虎, 李晓, 叶圣, 等. 基于改进U-Net网络的多尺度番茄病害分割算法[J]. 计算机工程与应用, 2022, 58(10):216-223.
|
|
ZHAO X H, LI X, YE S, et al. Multi-scale tomato disease segmentation algorithm based on improved U-Net network[J]. Computer Engineering and Applications, 2022, 58(10):216-223. (in Chinese with English abstract)
|
[17] |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
|
[18] |
BHAGAT S, KOKARE M, HASWANI V, et al. Eff-UNet++: a novel architecture for plant leaf segmentation and counting[J]. Ecological Informatics, 2022, 68: 101583.
|
[19] |
TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28) [2022-12-06]. https://arxiv.org/abs/1905.11946.
|
[20] |
HUANG M F, XU G Q, LI J Y, et al. A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++[J]. Agriculture, 2021, 11(12): 1216.
|
[21] |
ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
|
[22] |
王键. 木薯叶片病害与病指机器视觉与云服务的识别与测量[D]. 乌鲁木齐: 新疆农业大学, 2020.
|
|
WANG J. Identification and measurement of cassava leaf disease and disease index based on machine vision and cloud service[D]. Urumqi: Xinjiang Agricultural University, 2020. (in Chinese with English abstract)
|