Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 870-880.DOI: 10.3969/j.issn.1004-1524.20230480
Previous Articles Next Articles
GUO Weiliang1(), WU Jian1,2,*(
), ZHANG Xingyilong3, WU Kejing3, XIE Jiajia4, FENG Hailin1
Received:
2023-04-10
Online:
2024-04-25
Published:
2024-04-29
Contact:
WU Jian
CLC Number:
GUO Weiliang, WU Jian, ZHANG Xingyilong, WU Kejing, XIE Jiajia, FENG Hailin. Preparation of high-value furan platform compounds from Zizania latifolia stem[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 870-880.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230480
样品 Sample | 纤维素含量 Cellulose content | 半纤维素含量 Hemicellulose content | 木质素含量 Lignin content | 灰分含量 Ash content | 水分含量 Water content |
---|---|---|---|---|---|
茭白叶Water bamboo leaf | 29.30 | 20.14 | 24.48 | 9.10 | 9.15 |
茭白秆Water bamboo stem | 38.20 | 23.30 | 15.90 | 9.47 | 10.13 |
水稻叶Rice leaf | 34.14 | 20.45 | 16.68 | 16.79 | 11.85 |
水稻秸秆Rice stem | 39.69 | 19.75 | 16.48 | 13.92 | 12.53 |
Table 1 Comparison of component contents in different parts of water bamboo and %
样品 Sample | 纤维素含量 Cellulose content | 半纤维素含量 Hemicellulose content | 木质素含量 Lignin content | 灰分含量 Ash content | 水分含量 Water content |
---|---|---|---|---|---|
茭白叶Water bamboo leaf | 29.30 | 20.14 | 24.48 | 9.10 | 9.15 |
茭白秆Water bamboo stem | 38.20 | 23.30 | 15.90 | 9.47 | 10.13 |
水稻叶Rice leaf | 34.14 | 20.45 | 16.68 | 16.79 | 11.85 |
水稻秸秆Rice stem | 39.69 | 19.75 | 16.48 | 13.92 | 12.53 |
Fig.1 Scanning electron microscope (SEM) images of water bamboo stem and leaf before and after ball milling a, b, Water bamboo stem before ball milling; c, d, Water bamboo stem after ball milling; e, f, Water bamboo leaf before ball milling; g, h, Water bamboo leaf after ball milling.
Fig.2 XRD patterns of Zizania latifolia straw before and after ball milling a, Water bamboo leaf after ball milling; b, Water bamboo leaf before ball milling; c, Water bamboo stem after ball milling; d, Water bamboo stem before ball milling.
Fig.4 Characterization of catalysts a, X-ray diffraction (XRD) profile; b, Curve of NH3 temperature programmed desorption (TPD); c, Fourier transform infrared spectroscopy (FT-IR) pattern.
Fig.5 Comparison of hydrolysis efficiency of water bamboo leaf and stem before or after ball milling M1, Water bamboo leaf before ball milling; M2, Water bamboo leaf after ball milling; M3, Water bamboo stem before ball milling; M4, Water bamboo stem after ball milling. Reaction conditions are as follows: raw material 0.2 g, catalyst 0.05 g, water 3 mL, organic solvent 9 mL, reaction temperature 200 ℃, reaction time 90 min.
Fig.6 Effects of Solvent Systems on Hydrolysis Efficiency of water bamboo stem S1, Pure water; S2, Water/THF; S3, 5% (mass fraction) NaCl solution/THF; S4, Water/MIBK; S5, 5% (mass fraction) NaCl solution/MIBK. Reaction conditions are as follows: raw material 0.2 g, catalyst 0.05g, water or 5% (mass fraction) NaCl solution 3 mL, organic solvent 9 mL, reaction temperature 200 ℃, reaction time 90 min.
Fig.7 Effect of catalyst dosage on yield and raw material conversion rate Reaction conditions are as follows: raw material 0.2 g, 5% (mass fraction) NaCl solution 3 mL, organic solvent 9 mL, reaction temperature 200 ℃, reaction time 30 min.
Fig.8 Effect of reaction time on yield and raw material conversion rate Reaction conditions are as follows: raw material 0.2 g, catalyst 0.1 g, 5% (mass fraction) NaCl solution 3 mL, organic solvent 9 mL, reaction temperature 200 ℃.
Fig.9 Effect of reaction temperature on yield and raw material conversion rate Reaction conditions are as follows: raw material 0.2 g, catalyst 0.1 g, 5% (mass fraction) NaCl solution 3 mL, organic solvent 9 mL, reaction time 30 min.
温度 Temperature/ ℃ | 反应速率常数k1 Reaction rate constant k1/min-1 | 反应速率常数k2 Reaction rate constant k2/min-1 | 决定系数 Determination coefficient (R2) |
---|---|---|---|
160 | 1.688×10-3 | 0.0473 9 | 0.930 2 |
180 | 5.214×10-3 | 0.0650 3 | 0.937 4 |
200 | 1.454×10-2 | 0.0911 1 | 0.914 4 |
Table 2 The reaction rate constant of the hydrolysis kinetics of ball-milled Zizania latifolia stem at different temperatures
温度 Temperature/ ℃ | 反应速率常数k1 Reaction rate constant k1/min-1 | 反应速率常数k2 Reaction rate constant k2/min-1 | 决定系数 Determination coefficient (R2) |
---|---|---|---|
160 | 1.688×10-3 | 0.0473 9 | 0.930 2 |
180 | 5.214×10-3 | 0.0650 3 | 0.937 4 |
200 | 1.454×10-2 | 0.0911 1 | 0.914 4 |
Fig.11 Relationship between the natural logarithm of reaction rate constant (ln k) and the reciprocal value of reaction temperature (T-1) in the the hydrolysis of water bamboo stem after ball milling
[1] | 丁文冉, 李欢, 赵保峰, 等. 农林废弃物生物质水热液化研究探讨[J]. 现代化工, 2021, 41(10): 23-27. |
DING W R, LI H, ZHAO B F, et al. Review on hydrothermal liquefaction of agricultural and forestry waste biomass[J]. Modern Chemical Industry, 2021, 41(10): 23-27. (in Chinese with English abstract) | |
[2] | YANG J E, HE Q, YANG L X. A review on hydrothermal co-liquefaction of biomass[J]. Applied Energy, 2019, 250: 926-945. |
[3] | XU C, PAONE E, RODRÍGUEZ-PADRÓN D, et al. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural[J]. Chemical Society Reviews, 2020, 49(13): 4273-4306. |
[4] | YE L, HAN Y W, WANG X T, et al. Recent progress in furfural production from hemicellulose and its derivatives: conversion mechanism, catalytic system, solvent selection[J]. Molecular Catalysis, 2021, 515: 111899. |
[5] | 杜叶红. 浙江省茭白不同栽培模式的效益分析[J]. 浙江农业科学, 2019, 60(3): 383-384. |
DU Y H. Benefit analysis of Zizania latifolia under different cultivation patterns in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(3): 383-384. (in Chinese) | |
[6] | CAO L C, ZHANG C, CHEN H H, et al. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects[J]. Bioresource Technology, 2017, 245: 1184-1193. |
[7] | SAHOO D, UMMALYMA S B, OKRAM A K, et al. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis[J]. Bioresource Technology, 2018, 253: 252-255. |
[8] | 孙小龙, 王菲菲, 张舜, 等. 茭白废弃物液化工艺的研究[J]. 广东化工, 2020, 47(6): 33-35. |
SUN X L, WANG F F, ZHANG S, et al. Research on the liquefaction technology of water bamboo waste[J]. Guangdong Chemical Industry, 2020, 47(6): 33-35. (in Chinese with English abstract) | |
[9] | NGUYEN T T, CHEN H H, TO T H, et al. Development of biochars derived from water bamboo (Zizania latifolia) shoot husks using pyrolysis and ultrasound-assisted pyrolysis for the treatment of reactive black 5 (RB5) in wastewater[J]. Water, 2021, 13(12): 1615. |
[10] | DAENGPRASERT W, BOONNOUN P, LAOSIRIPOJANA N, et al. Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7903-7910. |
[11] | ZHANG X, LU H F, WU K J, et al. Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42--TiO2 in water-ethanol solvent[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 136-142. |
[12] | WU K J, FENG G R, LIU Y Y, et al. Enhanced hydrolysis of mechanically pretreated cellulose in water/CO2 system[J]. Bioresource Technology, 2018, 261: 28-35. |
[13] | JIANG Z C, YI J, LI J M, et al. Promoting effect of sodium chloride on the solubilization and depolymerization of cellulose from raw biomass materials in water[J]. ChemSusChem, 2015, 8(11): 1901-1907. |
[14] | YANG C Y, YUAN X L, WANG X T, et al. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Frontiers of Chemical Science and Engineering, 2020, 14(4): 605-613. |
[15] | 赵蒙蒙, 姜曼, 周祚万. 几种农作物秸秆的成分分析[J]. 材料导报, 2011, 25(16): 122-125. |
ZHAO M M, JIANG M, ZHOU Z W. The components analysis of several kinds of agricultural residues[J]. Materials Review, 2011, 25(16): 122-125. (in Chinese with English abstract) | |
[16] | CAI C M, ZHANG T Y, KUMAR R, et al. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(1): 2-10. |
[17] | LI J M, JIANG Z C, HU L B, et al. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system[J]. ChemSusChem, 2014, 7(9): 2482-2488. |
[18] | MURANAKA Y, MATSUBARA K, MAKI T, et al. 5-Hydroxymethylfurfural synthesis from monosaccharides by a biphasic reaction-extraction system using a microreactor and extractor[J]. ACS Omega, 2020, 5(16): 9384-9390. |
[19] | RIHKO-STRUCKMANN L K, MOLNAR M, PIRWITZ K, et al. Recovery and separation of carbohydrate derivatives from the lipid extracted alga Dunaliella by mild liquefaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 588-595. |
[20] | BRUCE S M, ZONG Z W, CHATZIDIMITRIOU A, et al. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent[J]. Journal of Molecular Catalysis A: Chemical, 2016, 422: 18-22. |
[21] | SHAO Y C, LONG Y Y, ZHOU Y, et al. 5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction[J]. Energy, 2019, 174: 198-205. |
[22] | 任素霞, 徐海燕, 雷廷宙, 等. 稻壳水解制备糠醛的工艺条件研究[J]. 太阳能学报, 2012, 33(6): 893-898. |
REN S X, XU H Y, LEI T Z, et al. Study on production of furfural from rice husk[J]. Acta Energiae Solaris Sinica, 2012, 33(6): 893-898. (in Chinese with English abstract) | |
[23] | STÅHLBERG T, FU W J, WOODLEY J M, et al. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: paving the way to renewable chemicals[J]. ChemSusChem, 2011, 4(4): 451-458. |
[24] | TUCK C O, PÉREZ E, HORVÁTH I T, et al. Valorization of biomass: deriving more value from waste[J]. Science, 2012, 337(6095): 695-699. |
[25] | TYAGI U, ANAND N. Conversion of Babool wood residue to 5-hydroxymethyl furfural: kinetics and process modelling[J]. Bioresource Technology Reports, 2021, 14: 100674. |
[26] | ATANDA L, KONAROVA M, MA Q, et al. High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system[J]. Catalysis Science & Technology, 2016, 6(16): 6257-6266. |
[27] | MENSAH M, ASIEDU N Y, NEBA F A, et al. Modeling, optimization and kinetic analysis of the hydrolysis process of waste cocoa pod husk to reducing sugars[J]. SN Applied Sciences, 2020, 2(7): 1-17. |
[28] | 亓伟, 庄新姝, 王琼, 等. 稀硫酸催化木屑纤维素水解动力学研究[J]. 太阳能学报, 2013, 34(9): 1499-1503. |
QI W, ZHUANG X S, WANG Q, et al. Study on the kinetic behavior of cellulose within sawdust using dilute sulfuric acid as catalyst[J]. Acta Energiae Solaris Sinica, 2013, 34(9): 1499-1503. (in Chinese with English abstract) | |
[29] | SOUKUP-CARNE D, FAN X L, ESTEBAN J. An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural[J]. Chemical Engineering Journal, 2022, 442: 136313. |
[30] | LOPES E S, RIVERA E C, JESUS GARIBOTI J C, et al. Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model[J]. Cellulose, 2020, 27(10): 5641-5663. |
[1] | ZHU Weicheng, GAO Haiyan, HAN Yanchao, LI Daxiang, CHEN Hangjun. Effects of different pre-cooling methods on cooling speed and storage quality of postharvest water bamboo shoot [J]. , 2020, 32(10): 1873-1879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||